OpenStack:Folsom-All-in-One

Contents

¢ 1 Deployment
Overview

e 2 Deployment
Prerequisites

¢ 3 Deployment
Steps

¢ 4 System Fixes

¢ 5 Deploy!
e 6 Conclusions

Deployment Overview
THIS DOCUMENT IS A WORK IN PROGRESS.

The All-in-One method of deploying OpenStack will give the user a functional OpenStack environment with
the current general deployment components based on the Cisco Edition model. Currently, this deployment
model includes:

® Nova

® Glance

¢ Keystone

¢ Quantum

® Nova-Volume
e Horizon

It does not include:

¢ Cinder
o Swift
e Other incubation Projects

It does include a subset of non incubated but still useful tools:

® Nagios
e Collectd/Monitd

Deployment Prerequisites

You should already have a single machine on which to build your openstack environment, and it should have
access to the public internet (though it is not a requirement for the public internet to have access to the
machine). This machine can be a physical system, or a virtual instance. You should have ~30GB of Free
disk space, and you will likley want at least 4GB of RAM, though more is almost always better. It is also a
requirement currently that you run Ubuntu 12.04.01 though 32 or 64 bit should not make a difference (we've
tested exclusively on 64 bit OSs). It may also be possible to leverage Ubuntu Server 12.10 or a RedHat
variant (RHEL/RHEV 6.3, Fedora 17, Centos 6.3), but these have not been tested. As this system will use a
single interface, the upstream network is not particularly critical, though it is certainly easier to work with the
system if there is a consistent CIRD subnet IPv4 address block availalble. IPv6 _should_ also function, but
has not been tested in the current system.

® x86 class server or virtual machine with >=4GB RAM, >=30GB disk

Contents 1

OpenStack:Folsom-All-in-One

e Ubunt Server 12.04.1 installed with OpenSsh-server installed
¢ A single network interface, preferably with an open CIDR subnet attached (e.g. 192.168.100.1/26)

Deployment Steps
1. Install Ubuntu 12.04.1 x86_64 Server operating system

¢ Follow the standard install process, selecting the defaults
¢ Install at least OpenSSH-server
® We have tested principally with the disk in LVM mode

2. Install additional prerequisite packages:
® puppet, git
Become root
$ sudo -H bash
Install packages
apt—get update && apt—-get dist-upgrade -y && apt-get install puppet git -y
Now, clone the puppet baseline code that will help bring in the rest of the system.

git clone https://github.com/robertstarmer/folsom-manifests -b all-in-one all-in-one-manifests
cp all-in-one-manifests/manifests/* /etc/puppet/manifests/

Note that if you need to go through a proxy server to get to the internet, you may need to pass appropriate
environment variables to these commands like so:

http_proxy=http://myproxy:port https_proxy=https://myproxy:port apt-get update && apt-get dist-t
https_proxy=https://myproxy:port git clone https://github.com/robertstarmer/folsom-manifests -Db

Now grab the rest of the puppet code:

cd /etc/puppet/manifests; ./puppet-modules.sh
Or, if you need to use a proxy:
cd /etc/puppet/manifests; https_proxy=https://myproxy:port ./puppet-modules.sh

Next we need to resolve a few "glitches" in the current code:

for n in nova quantum openstack horizon;

do

rm -rf /etc/puppet/modules/S$n

git clone -b folsom https://github.com/robertstarmer/puppet-$n /etc/puppet/modules/S$n
done

s

Here again, if you need to go through a proxy server to get to the internet, you may need to modify the
command like so:

for n in nova quantum openstack horizon;

do

rm -rf /etc/puppet/modules/Sn

https_proxy=https://myproxy:port git clone -b folsom https://github.com/robertstarmer/puppet-$n
done

e

Deployment Prerequisites 2

OpenStack:Folsom-All-in-One

Now. You will need to edit the sample site.pp to meet your specific site. This should require changing only a
very small number of parameters:

¢ node hostname (recommend something with "aio" in the name)
® Default interface IP, Netmask, and default gateway

e upstream ntp server

¢ do you need a proxy for internet access?

cp /etc/puppet/manifests/site.pp.aio.example /etc/puppet/manifests/site.pp
vi /etc/puppet/manifests/site.pp

System Fixes

With those steps completed, there are only a few small tweaks that still need to be made to the system before
we can launch the puppet. 1. Because we are going to set up Open Virtual Switch as a part of the
deployment, and because we are going to only leverage a single interface, we will need to modify the
network interfaces file. this may be resolved in a future deployment model, but today, this is a part of the
basic setup:

vi /etc/network/interfaces

the simplest way to fix this file is to copy the two lines for your primary interface (often this is eth(), and
paste them back in.

An example before:

</pre>auto eth0 iface ethO inet static

address 1.2.3.4
netmask 1.0.0.0
dns—...

etc.

</pre>

An example after:

auto ethO
iface ethO inet static
address 0.0.0.0

auto br-ex

iface br-ex inet static
address 1.2.3.4
netmask 1.0.0.0
dns—...
etc.

And because OpenVirtual Switch starts later than the "rest" of the network subsystems, we'll fix a glitch that
would add a few minutes to the boot time of the server. Find the section in the file: /etc/init/failsafe.conf that
looks like:

SPLYMOUTH message —--text="Waiting for network configuration..." ||
sleep 40

SPLYMOUTH message --text="Waiting up to 60 more seconds for network configuration..."

Deployment Steps 3

OpenStack:Folsom-All-in-One

sleep 59
SPLYMOUTH message —--text="Booting system without full network configuration..." ||

and make it look like:

SPLYMOUTH message —--text="Waiting for network configuration..." ||

SPLYMOUTH message --text="Waiting up to 60 more seconds for network configuration...

SPLYMOUTH message —--text="Booting system without full network configuration..." ||
Deploy!
Great, now we're ready for the majic to happen!

Important Note: unlike in the previous steps, if you're behind a proxy server you don't want to pass around
proxy environment variables here. If you've set up proxy support in your site.pp file, things that need to talk
to the internet (e.g. package installation processes) will use the proxy settings you added to site.pp. If you do
pass in proxy environment variables, you may have some problems due to the fact that the puppet code
you're about to invoke makes REST API calls--and if those are mistakenly sent through a proxy server, they
may not reach their intended destinations.

First, we can do a quick test to make sure that our site.pp doesn't contain any obvious errors:

cd /etc/puppet/manifests
puppet apply -v —--noop site.pp

There may still be some errors thrown because things aren't actually installing, but it shouldn't quit while
trying to compile the catalog.

Now, let's run for real. I tend to run this step inside of screen, to make sure it completes (note: you may need
to run "apt-get install screen" if screen isn't installed already), even though I'm going to ask the system to
reboot after completion so that our new network configuration takes place (assuming a single network
interface).

screen
cd /etc/puppet/manifests
puppet apply -v site.pp ; reboot

In about 15 minutes or so (depending on the speed of your disk, network connection, etc.) you should have a
basic OpenStack system based on the Cisco Edition model!.

Now, how do you use that brand new system? Well, first you will need to load some kind of image into the
environment, and we can suggest the Cirros image as it's small and yet functional enough to get started.
Certainly you can deploy other cloud images (including Amazon images!) into the system, but be aware that
your images, and your deployed VMs will be sharing whatever local disk space your system has. One reason
we like the Cirros image is that it's only ~10MB in size!. You can grab a copy from here:

http://download.cirros-cloud.net/0.3.1/
A quick way to get a first image up is to use our Quantum test script:

git clone https://github.com/CiscoSystems/quantum-13-test
Or if you're behind a proxy:

https_proxy=https://myproxy:port git clone https://github.com/CiscoSystems/quantum—-13-test

cd quantum-13-test

System Fixes 4

http://download.cirros-cloud.net/0.3.1/

OpenStack:Folsom-All-in-One

You can use the IP range of our external network (the one we used to tweak the network configuration
earlier) though you will need to have 3 free addresses usually right above the router address (so if the router
is 192.168.100.1, you would want to make sure that .2 .3 and .4 are available). It is also good to know what
your local DNS server is so that DNS can be assigned to the new vm when it starts. And lastly, you'll want a
pointer to the Cirros image (or your image of choice). The system expects a qcow2 complete image (sorry, it
doesn't load the 3 parts of an AMI at this point). The direct path to the Cirros image:
http://download.cirros-cloud.net/0.3.1/cirros-0.3.1-i386-disk.im

Now you can just run:

cd quantum-13-test

./create_vm

Or, if you're behind a proxy:

https_proxy=https://myproxy:port http_proxy=http://myproxy:port no_proxy="mydomain.com" ./crec

If all goes well, you should be able to do the following (assuming a 192.168.1.0/24 is your "external"
network):

ssh cirros@192.168.1.4

Conclusions

There's certainly a lot more that you can do with this system now that it's running, but hopefully this process
has removed a lot of the overhead of getting a basic system online.

Deploy! 5

http://download.cirros-cloud.net/0.3.1/cirros-0.3.1-i386-disk.img

	OpenStack:Folsom-All-in-One

