Cisco_Unity_Connection_Notification_Interface_(CUNI)_API_--_Subscribing_to_and_Processing_Notification_Events

Links to Other API pages: Cisco Unity Connection APIs

CUNI Guide Contents

API Overview
CUNI Event Schema
Subscribing to and Processing Notification Events

CUNI FAQs

Contents

e | Subscribing to Notification
Events

¢ 2 Processing Notification
Events

¢ 2.1 Example

Subscribing to Notification Events

Subscribing to notification events is done through the web service interface, and can be as simple as a single
web service call to "subscribe".

At a minimum you should pass in:

¢ The callback URL where XML notifications will be posted by the Notifier
¢ The date/time when the subscription will expire

It is also possible to pass in a list of the resources (userid) that you are interested in receiving events for,
although that can also be done via a subsequent call to "addResourceldToSubscription". We recommend that
you leave the eventTypeList empty, indicating that you would like to receive all types of message events.

This example shows making a call to subscribe in Java, using Axis2 stubs generated from the WSDL.:

Calendar expiration = java.util.Calendar.getInstance();
com.cisco.unity.messageeventservice.MessageEventServiceStub.Subscribe s =
new com.cisco.unity.messageeventservice.MessageEventServiceStub.Subscribe();

// Set subscription expiry to two months from now.
expiration.add(Calendar.MONTH, 2);
s.setExpiration (expiration);

// Specify the users we're interested in, which is just the operator for this example.
ArrayOfString resourcelist = new ArrayOfString();
resourcelist.addString ("operator");

s.setResourcelIdList (resourcelist);
s.setExpiration (expiration);

// Set the callback information — a username and password can be specified, but they are optional.
MessageEventServiceStub.CallbackServiceInfo ¢ = new MessageEventServiceStub.CallbackServiceInfol();
c.setCallbackServiceUrl (callbackUrl);

c.setPassword(callbackPassword);

c.setUsername (callbackUserId) ;

s.setCallbackServiceInfo(c);

Contents 1

http://docwiki.cisco.com/wiki/Cisco_Unity_Connection_APIs
http://docwiki.cisco.com/wiki/Cisco_Unity_Connection_Notification_Interface_(CUNI)_API
http://docwiki.cisco.com/wiki/Cisco_Unity_Connection_Notification_Interface_(CUNI)_API_--_CUNI_Event_Schema
http://docwiki.cisco.com/wiki/Cisco_Unity_Connection_Notification_Interface_(CUNI)_API_--_CUNI_FAQs

Cisco_Unity_Connection_Notification_Interface_(CUNI)_API_--_Subscribing_to_and_Processing_Notification_Events

// Subscribe!
SubscribeResponse r = stub.subscribe(s);

Processing Notification Events
Events will be delivered via HTTP POST to the callback URL that was provided in the call to subscribe.

There are four basic types of events:

Event Type Description

NEW_MESSAGE Sent when a new message arrives in a user Inbox.

SAVED_MESSAGE Sent when a message is marked as read.

UNREAD_MESSAGE [Sent when a message is marked as unread.

Sent when a message is deleted. (Note that this is sent on either a "hard" or
DELETED_MESSAGE | "soft" delete. In the case of a soft delete, when the message is deleted from the
deleted items list, no further event is sent out.)

Example

This is an example of an event xml. Keep in mind that it is valid to have more than one messagelnfo per
messageEvent:

<?xml version="1.0" ?>
<messageEvent subscriptionId="00bdcfd3-159a-48d3-ac7b-2£f3b4£83db6c"
eventType="SAVED_MESSAGE"
eventTime="11:15:40 PM 10/30/2008"
mailboxId="abell"
displayName="Alexander Bell"
USN="2265">
<messageInfo messageld="72204bd7-e5c3-446e-adb6-ae5£80db26fb"
receiveTime="04:15:40 PM 10/30/2008"
uid="543"
msgType="Voice"
priority="Normal-Priority"
sender="null"
callerAni="null" />
</messageEvent>

Subscribing to Notification Events 2

	Cisco_Unity_Connection_Notification_Interface_(CUNI)_API_--_Subscribing_to_and_Processing_Notification_Events

