COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide
Contents

¢ 1 Background
¢ 2 High-Availability Introduction
¢ 3 Dependencies

¢ 3.1 Critical Reminders

¢ 3.2 Operating System

¢ 3.3 Server Requirements

¢ 3.4 Networking Requirements
¢ 4 Installation

¢ 4.1 General Installation Steps for All Nodes
¢ 4.1.1 Ubuntu Precise 12.04 Installation
0 4.1.2 Grizzly Packages
0 4.1.3 Networking
¢ 4.1.4 Time Synchronization
¢ 4.2 1 .oad Balancer Node Installation
0 4.2.1 Keepalived & HAProxy
¢ 4.3 General Installation Steps for All Swift Nodes
¢ 4.4 Swift Storage Node Installation Steps
¢ 4.5 Swift Proxy Node Installation Steps
¢ 4.6 Verify the Swift Installation
¢ 4.7 Controller Node Installation
0 4.7.1 MySOQIL. WSREP and Galera Installation
0 4.7.2 MySQIL. WSREP and Galera Monitoring
¢ 4.7.3 Upgrade Client Libraries
¢ 4.7.4 RabbitMQ Installation
¢ 4.7.5 Keystone Installation
0 4.7.6 Glance Installation
¢ 4.7.7 Quantum Installation
¢ 4.7.8 Nova Installation
0 4.7.9 Cinder Installation
¢ 4.7.10 Horizon Installation
¢ 4.8 Compute Node Installation
¢ 4.8.1 Upgrade Client Libraries

¢ 4.8.2 Quantum Installation
¢ 4.8.3 Nova Installation

¢ 4.8.4 Cinder Installation
¢ 4.9 Configuring OpenStack Networking (Quantum) and Deploying the
First VM
¢ 4.10 Configuring OpenStack Networking (Quantum) DHCP Agent
High-Availability
¢ 5 Support
¢ 6 Credits
e 7 Authors

Background

There are two common ways of installing OpenStack, manually or by using automation tools. There is much
focus on the full automation of OpenStack deployments using tools such as Puppet, Chef, JuJu and others.
While these tools offer great advantages over manual configuration, they do hide the OpenStack installation
and configuration details. This document can be used by those interested in learning more about the
OpenStack Grizzly High-Availability (HA) installation process or for those not interested in using
automation tools to deploy HA. The document covers the following OpenStack software components:

Contents

http://docs.openstack.org/
http://puppetlabs.com/
http://www.opscode.com/chef/
https://juju.ubuntu.com/

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

¢ Glance (Image Service)

¢ Keystone (Identity Service)

® Nova (Compute Service)

¢ Horizon (OpenStack Dashboard Web User Interface)
¢ Quantum (Network Service)

¢ Cinder (Block Storage Service)

¢ Swift (Object Storage Service)

High-Availability Introduction

Most OpenStack deployments are maturing from evaluation-level environments to highly available and
highly scalable environments to support production applications and services. The Cisco OpenStack
High-Availability Guide differs from the OpenStack High Availability Guide by providing an active/active,
highly scalable model for OpenStack deployments. The architecture consists of the following components
used to provide high-availability to OpenStack services:

* MySOL Galera is synchronous multi-master cluster technology for MySQL/InnoDB databases that
includes features such as:
¢ Synchronous replication
¢ Active/active multi-master topology
¢ Read and write to any cluster node
¢ True parallel replication, on row level
¢ Direct client connections, native MySQL look & feel
¢ No slave lag or integrity issues

¢ Several OpenStack services utilize a message queuing system to send and receive messages between
software components. The Cisco reference architecture leverages RabbitMQ as the messaging
system since it is most commonly used within the OpenStack community. RabbitMQ Clustering and
RabbitMQ Mirrored Queues provide active/active and highly scalable message queuing for
OpenStack services.
¢ RabbitMQ Clustering: If your RabbitMQ broker consists of a single node, then a failure of
that node will cause downtime, temporary unavailability of service, and potentially loss of
messages. A cluster of RabbitMQ nodes can be used to construct your RabbitMQ broker.
Clustering RabbitMQ nodes are resilient to the loss of individual nodes in terms of the
overall availability of service. All data/state required for the operation of a RabbitMQ broker
is replicated across all nodes, for reliability and scaling. An exception to this are message
queues, which by default reside on the node that created them, though they are visible and
reachable from all nodes.
¢ RabbitMQ Mirrored Queues: While exchanges and bindings survive the loss of individual
nodes, message queues and their messages do not. This is because a queue and its contents
reside on exactly one node, thus the loss of a node will render its queues unavailable. To
solve these various problems, RabbitMQ has developed active/active high-availability for
message queues. This works by allowing queues to be mirrored on other nodes within a
RabbitMQ cluster. The result is that should one node of a cluster fail, the queue can
automatically switch to one of the mirrors and continue to operate, with no unavailability of
service. This solution still requires a RabbitMQ Cluster, which means that it will not cope
seamlessly with network partitions within the cluster and, for that reason, is not
recommended for use across a WAN (though of course, clients can still connect from as near
and as far as needed).
® HAProxy and Keepalived provide load-balancing betwwen clients and OpenStack API Endpoints.
¢ HAProxy is a free, very fast and reliable software solution offering high availability, load
balancing, and proxying for TCP and HTTP-based applications. HAProxy implements an
event-driven, single-process model which enables support for a high number of simultaneous

Background 2

http://glance.openstack.org/
http://keystone.openstack.org/
http://nova.openstack.org/
http://horizon.openstack.org/
http://docs.openstack.org/developer/quantum/
http://docs.openstack.org/developer/cinder/
http://docs.openstack.org/developer/swift/
http://docs.openstack.org/trunk/openstack-ha/content/index.html
http://codership.com/products/mysql_galera
http://www.rabbitmq.com/clustering.html
http://www.rabbitmq.com/ha.html
http://haproxy.1wt.eu/

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

connections.

¢ Keepalived is a routing software written in C. The main goal of the Keepalived project is to
provide simple and robust facilities for load-balancing and high-availability to Linux systems
and Linux-based infrastructures. Load-balancing frameworks rely on the well-known and
widely used Linux Virtual Server (IPVS) kernel module providing Layer4 load-balancing.
Keepalived implements a set of checkers to dynamically and adaptively maintain and
manage load-balanced server pool according their health. On the other hand high-availability
is achieved by VRRP protocol. VRRP is a fundamental brick for router fail-over.

e Multiple Quantum .3 and DHCP Agents Blueprint, as it states, allows multiple Quantum Layer-3
and DHCP Agents to be deployed for high-availability and scalability purposes. At this time (Grizzly
release), multiple DHCP Agents can service a Quantum network, however, only a single L3 Agent
can service one Quantum network at a time. Therefore, the L3 Agent is a single point of failure and
is not included in the Cisco High-Availability Deployment Guide. Quantum Provider Network
Extensions are used to map physical data center networks to Quantum networks. In this deployment
model, Quantum relies on the physical data center to provide Layer-3 high-availability instead of the
L3 Agent.

¢ Glance uses Swift as the back-end to storage OpenStack images. Just as with the rest of the
OpenStack API's, HAProxy and Keepalived provide high-availability to the Glance API and Registry
endpoints.

e Swift: Multiple Swift Proxy nodes are used to provide high-availability to the Swift proxy service.
Replication provides high-availability to data stored within a Swift object-storage system. The
replication processes compare local data with each remote copy to ensure they all contain the latest
version. Object replication uses a hash list to quickly compare subsections of each partition, and
container and account replication use a combination of hashes and shared high water marks.

Dependencies

Critical Reminders

The most common OpenStack HA deployment issues are either incorrect configuration files or not deploying
the nodes in the proper order. To save you from future troubleshooting steps, ENSURE that you deploy the
nodes in the order described within the document and verify the accuracy of all configuration files. You will
likely be using your own IP addressing and passwords in your setup and it is critical to ensure any variations
from this guide are fully understood.

Do not configure RAID on the hard disks of Swift Storage Nodes. Swift performs better without RAID and
disk redundancy is unneeded since Swift protects the data through replication. Therefore, if a RAID
Controller manages the hard disks, ensure you present each of the hard disks independently. Our example
uses disk /dev/sda for the Operating System installation and disks /dev/sdb-/dev/sdf for Swift storage. Please
remember to modify these definitions based on your specific deployment environment. Additional Swift
considerations and tuning information can be found here.

Compute Nodes run Cinder Volume to provide block storage services to Instances. The default Cinder driver
(volume_driver=nova.volume.driver.ISCSIDriver) is an iSCSI solution that employs the use of Linux
Logical Volume Manager (LVM). Therefore, you must create an LVM Volume Group either during the
Ubuntu Precise installation or afterwards. The name of the LVM Volume Group must match the
volume_group definition in cinder.conf. Our example uses the name nova-volumes for the LVM Volume
Group and associated cinder.conf volume_group name.

The password used in our examples is keystone_admin. Every account, service and configuration file uses

this one password. You will want to change this in your setup and you certainly want to use a strong
password and a different password for each account/service if this system is going into production.

High-Availability Introduction 3

http://www.keepalived.org/
https://blueprints.launchpad.net/quantum/+spec/quantum-scheduler
http://docs.openstack.org/trunk/openstack-object-storage/admin/content/considerations-and-tuning.html
http://docs.openstack.org/trunk/openstack-compute/admin/content/cinder-install.html

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide
Operating System

The operating system used by OpenStack nodes in the HA architecture is Ubuntu 12.04 LTS (Precise).
Before installing the operating system, RAID should be configured for hard disks of all nodes, except Swift
storage nodes. The RAID type will depend on your deployment needs and RAID Controller specifications.
At the minimum, select a RAID type that provides redundancy in the event of a single disk failure. The
details for configuring RAID on UCS B-Series and C-Series servers can be found here

Server Requirements

Our deployment uses 13 Cisco UCS C-series servers to serve the roles of Controller, Compute,
Load-Balancer and Swift Proxy/Storage. The environment scales linearly, therefore individual nodes can be
added to increase capacity for any particular OpenStack service. The five distinct node types used in this
document are:

¢ 3 Controller Nodes- Runs Nova API, Nova Conductor, Nova Consoleauth, Nova Novncproxy,
Nova Scheduler, NoVNC, Quantum Server, Quantum Plugin OVS, Glance API/Registry, Keystone,
Cinder API, Cinder Scheduler, OpenStack Dashboard, RabbitMQ Server, MySQL Server WSREP
and Galera.
¢ Provides management functionality of the OpenStack environment.

¢ 3 Compute Nodes- Runs Nova Compute, Quantum OVS and DHCP Agents, Cinder Volume and
TGT services.
¢ Provides the hypervisor role for running Nova instances (Virtual Machines) and presents
LVM volumes for Cinder block storage.

¢ 2 Load-Balancer Nodes- Runs HAProxy and Keepalived to load-balance traffic across Controller
and Swift Proxy clusters.

¢ 2 Swift Proxy Nodes- The Proxy Node is responsible for tying together users and their data within
the the Swift object storage system. For each request, it will look up the location of the account,
container or object in the Swift ring and route the request accordingly. The public API is also
exposed by Proxy Node.

¢ 3 Swift Storage Nodes- Each Storage Nodes contains Swift object, container, and account services.
At a very high-level, these are the servers that contain the user data and perform replication among
one another to keep the system in a consistent state.

Networking Requirements

The OpenStack HA environment uses five separate networks. Three of the five networks are used by
Tenants. Three tenant networks are being used as an example, and thus the tenant networks can be increased
or decreased based on your deployment needs. Connectivity within Tenants uses Quantum with the Open
vSwitch (OVS) plugin and Provider Network Extensions. Provider Network Extensions allow cloud
administrators to create OpenStack networks that map directly to physical networks in the data center and
support local, VLAN and GRE deployment models. Our example uses the Provider VLAN networking
model. The network details are as follows:

¢ 1 Management Network
¢ This network is used to perform management functions against the node. For example,
SSH'ing to the nodes to change a configuration setting. The network is also used for
lights-out management using the CIMC interface of the UCS servers. Lastly, OpenStack

Operating System

http://www.cisco.com/en/US/docs/unified_computing/ucs/c/sw/raid/configuration/guide/RAID_Config_Guide.pdf
http://docs.openstack.org/trunk/openstack-network/admin/content/provider_networks.html

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

API's and the Horizon web dashboard is associated to this network.
¢ An IP address for each node is required for this network. If using lights-out management
such as CIMC, each node will require 2 addresses from this network.
¢ This network typically employs private (REC1918).
¢ 3 Tenant Networks
¢ These networks are used to provide connectivity to Instances. Since Quantum Provider
Networking Extensions are being used, it is common to give tenants direct access to a
"public" network that can be used to reach the Internet.
¢ Compute Nodes will have an interface attached to this network. Since the Compute Node
interfaces that attach to this network are managed by OVS, they should not contain an IP
address.
¢ This network typically employs publicly routable IP addressing if external NAT'ing is not
used upstream towards the Internet edge (Note: in this document all IP addressing for all
interfaces comes out of various private addressing blocks).
¢ 1 Storage Network
¢ This network is used for providing separate connectivity between Swift Proxy and Storage
Nodes. This ensures storage traffic is not interfering with Instance traffic.
¢ This network typically employs private (REC1918) IP addressing.

Figure 1 is used to help visualize the network deployment and to act as a reference for configuration steps
within the document. It is highly recommend to print the diagram so it can easily be referenced throughout
the installation process.

Figure 1:OpenStack HA Network Design Details

¢ Other Network Services
¢ DNS: In this setup an external DNS server (192.168.26.186) is used for name resolution of
OpenStack nodes and external name resolution. If DNS is not being used, the /etc/hosts file
should include the following for all nodes:

127.0.0.1 localhost

192.168.220.40 control.dmz-pod2.lab control
192.168.220.41 control0l.dmz-pod2.lab controlOl
192.168.220.42 control02.dmz-pod2.lab control02
192.168.220.43 control03.dmz-pod2.lab control03
192.168.220.60 swiftproxy.dmz-pod2.lab swiftproxy
192.168.220.61 swiftproxy0l.dmz-pod2.lab swiftproxyOl
192.168.220.62 swiftproxy02.dmz-pod2.lab swiftproxy02
192.168.220.51 computelOl.dmz-pod2.lab computell
192.168.220.52 computel2.dmz-pod2.lab compute02

Networking Requirements

http://tools.ietf.org/html/rfc1918
http://tools.ietf.org/html/rfc1918
http://docwiki.cisco.comhttp://docwiki.cisco.com/w/images/a/a8/Grizzly-ha-network-design-details-v1.0.png
http://docwiki.cisco.com/wiki/File:Grizzly-ha-network-design-details-v1.0.png
http://docwiki.cisco.com/wiki/File:Grizzly-ha-network-design-details-v1.0.png

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

192.168.220.53 computel03.dmz-pod2.lab compute03

¢ NTP: In this setup an external NTP server(s) is used for time synchronization.

¢ Physical Network Switches: Each node in this setup is physically attached to a Cisco Nexus switch
acting as a Top-of-Rack access layer device. Trunking is configured on each interface connecting to
the ethO NIC of each node.

Note: Upstream routers/aggregation layer switches will most likely be terminating the Layer-3 VLAN
interfaces. If these interfaces are deployed in a redundant fashion with a First Hop Redundancy Protocol such
as HSRP or VRRP, then you should be careful of the IP addresses assigned to the physical L3
switches/routers as they may conflict with the IP address of the Quantum router's public subnet (.3 by
default). For example, if you are using HSRP and you have .1 as the standby IP address, .2 as the first L3
switch IP and .3 as the second L3 switch IP, you will receive a duplicate IP address error on the second L3
switch. This can be worked around by using high-order IPs on your upstream L3 device or altering the
Quantum subnet configuration at the time of creation to have an IP starting range higher than the physical
switches/routers are using (i.e. .4 and higher). Our example uses an IP allocation range that starts with .10 to
avoid this issue.

Installation
The installation of the nodes should be in the following order:

1. Load-Balancer Nodes- sIbO1 and s1b02

2. Swift Storage Nodes- swift01, swift02 and swift03

3. Swift Proxy Nodes- swiftproxy01 and swiftproxy(02

4. Controller Nodes- control01, control02 and control03

5. Compute Nodes- compute01, compute02 and compute(03

General Installation Steps for All Nodes
Ubuntu Precise 12.04 Installation

Install Ubuntu 12.04 (AMD 64-bit) from CD/ISO or automated install (i.e. kickstart). You can reference
Section 4 in the Build Node Guide if you are unfamiliar with the Ubuntu Precise installation process. Use the
following networking section to configure your network adapter properties for each node. As previously
mentioned in the Critical Reminders Section, make sure to create an LVM Volume Group named
nova-volumes for Compute Nodes and do not configure RAID for Swift Storage Nodes. Lastly, select
ssh-server as the only additional package during the Ubuntu Precise installation.

Grizzly Packages

Canonical?s Ubuntu Cloud Archive allows users the ability to install newer releases of OpenStack (and
dependencies) on Ubuntu Server 12.04 LTS as they become available up through the next Ubuntu LTS
release. Canonical commits to maintaining and supporting new OpenStack releases for Ubuntu Server 12.04
LTS in the Ubuntu Cloud archive for at least 18 months after they release. The Ubuntu Cloud Archive should

be used for all OpenStack nodes (i.e. not needed for Load-Balancer nodes).

Use sudo mode or run from root account for the entire installation:

sudo su

Installation 6

http://docwiki.cisco.com/wiki/OpenStack:Essex_Build_Node#Starting_the_Ubuntu_Installation
https://wiki.ubuntu.com/ServerTeam/CloudArchive
http://releases.ubuntu.com/precise/
http://releases.ubuntu.com/precise/

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide
Add the cloud archive gpg key into your ubuntu-keyring:

apt—-get install ubuntu-cloud-keyring

Enable the Ubuntu Cloud Archive repository by adding the following to /etc/apt/sources.list.d/grizzly.list:
deb http://ubuntu-cloud.archive.canonical.com/ubuntu precise-updates/grizzly main
Update your system:

apt-get update && apt-get upgrade

Networking

Our implementation uses VLANS for segmentation of certain networks. Make sure the VLAN package is
installed and your network switches have been configured for VLANSs. Otherwise, replicate the network
setup using only physical interfaces:

apt-get install vlan -y

Load-Balancer Node slb01 /etc/network/interfaces:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface

auto ethO

iface eth0 inet static
address 192.168.220.81
netmask 255.255.255.0
network 192.168.220.0
broadcast 192.168.220.255
gateway 192.168.220.1
dns—-* options are implemented by the resolvconf package, if installed
dns-nameservers 192.168.220.254
dns-search dmz-pod2.lab

Load-Balancer Node slb02 /etc/network/interfaces:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface

auto ethO

iface eth0 inet static
address 192.168.220.82
netmask 255.255.255.0
network 192.168.220.0
broadcast 192.168.220.255
gateway 192.168.220.1
dns—* options are implemented by the resolvconf package, if installed
dns—nameservers 192.168.220.254
dns—-search dmz-pod2.lab

Storage Node swift01 /etc/network/interfaces:

The loopback network interface

Grizzly Packages

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

auto lo
iface lo inet loopback

Management Network

auto ethO

iface eth0 inet static
address 192.168.220.71
netmask 255.255.255.0
network 192.168.220.0
broadcast 192.168.220.255
gateway 192.168.220.1
dns—-search dmz-pod2.lab
dns—-nameservers 192.168.220.254

Storage Network

auto eth0.222

iface eth0.222 inet static
address 192.168.222.71
netmask 255.255.255.0

Storage Node swift02 /etc/network/interfaces:

The loopback network interface
auto lo
iface lo inet loopback

Management Network

auto ethO

iface eth0 inet static
address 192.168.220.72
netmask 255.255.255.0
network 192.168.220.0
broadcast 192.168.220.255
gateway 192.168.220.1
dns-search dmz-pod2.lab
dns—-nameservers 192.168.220.254

Storage Network

auto eth0.222

iface eth0.222 inet static
address 192.168.222.72
netmask 255.255.255.0

Storage Node swift03 /etc/network/interfaces:

The loopback network interface
auto lo
iface lo inet loopback

Management Network

auto ethO

iface eth0 inet static
address 192.168.220.73
netmask 255.255.255.0
network 192.168.220.0
broadcast 192.168.220.255
gateway 192.168.220.1

Networking

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

dns-search dmz-pod2.lab
dns—-nameservers 192.168.220.254

Storage Network

auto eth0.222

iface eth0.222 inet static
address 192.168.222.73
netmask 255.255.255.0

¢ Proxy Node swiftproxy01 /etc/network/interfaces:

The loopback network interface
auto lo
iface lo inet loopback

Management Network

auto ethO

iface eth0 inet static
address 192.168.220.61
netmask 255.255.255.0
network 192.168.220.0
broadcast 192.168.220.255
gateway 192.168.220.1
dns—-search dmz-pod2.lab
dns—-nameservers 192.168.220.254

Storage Network

auto eth0.222

iface eth0.222 inet static
address 192.168.222.61
netmask 255.255.255.0

Proxy Node swiftproxy02 /etc/network/interfaces:

The loopback network interface
auto lo
iface lo inet loopback

Management Network

auto ethO

iface eth0 inet static
address 192.168.220.62
network 192.168.220.0
netmask 255.255.255.0
broadcast 192.168.220.255
gateway 192.168.220.1
dns—-search dmz-pod2.lab
dns-nameservers 192.168.220.254

Storage Network

auto eth0.222

iface eth0.222 inet static
address 192.168.222.62
netmask 255.255.255.0

Control Node control01 /etc/network/interfaces:

Networking

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide
The loopback network interface
auto lo

iface lo inet loopback

The primary network interface

auto ethO

iface eth0 inet static
address 192.168.220.41
netmask 255.255.255.0
network 192.168.220.0

broadcast 192.168.220.255
gateway 192.168.220.1

dns—-* options are
dns—-nameservers 192

dns—-search dmz-pod2.

implemented by the resolvconf package, if installed
.168.220.254

lab

Control Node control02 /etc/network/interfaces:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface

auto ethO

iface ethO inet
address

static
192.168.220.42
netmask 255.255.255.0
network 192.168.220.0
broadcast 192.168.220.255

gateway 192.168.220.

dns—-* options are
dns—-nameservers 192

dns—-search dmz-pod2.

1

implemented by the resolvconf package,
.168.220.254

lab

if installed

Control Node control03 /etc/network/interfaces:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface

auto ethO

iface eth0 inet static
address 192.168.220.43
netmask 255.255.255.0
network 192.168.220.0

broadcast 192.168.220.255
gateway 192.168.220.1

dns—-* options are
dns—-nameservers 192

dns—-search dmz-pod2.

implemented by the resolvconf package, if installed
.168.220.254

lab

Compute Node compute0Q1 /etc/network/interfaces:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto ethO
iface eth0 inet static

address 192.168.220.51

Networking 10

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

netmask 255.255.255.0

network 192.168.220.0

broadcast 192.168.220.255

gateway 192.168.220.1

dns—-* options are implemented by the resolvconf package, if installed
dns-nameservers 192.168.220.254

dns-search dmz-pod2.lab

Public Network: Bridged Interface

auto ethl

iface ethl inet manual
up ifconfig $IFACE 0.0.0.0 up
up ip link set $IFACE promisc on
down ifconfig $IFACE 0.0.0.0 down

Compute Node compute(2 /etc/network/interfaces:

The loopback network interface
auto 1lo
iface lo inet loopback

The primary network interface

auto ethO

iface eth0 inet static
address 192.168.220.52
netmask 255.255.255.0
network 192.168.220.0
broadcast 192.168.220.255
gateway 192.168.220.1
dns—* options are implemented by the resolvconf package, if installed
dns—nameservers 192.168.220.254
dns-search dmz-pod2.lab

Public Network: Bridged Interface

auto ethl

iface ethl inet manual
up ifconfig $IFACE 0.0.0.0 up
up ip link set $IFACE promisc on
down ifconfig $IFACE 0.0.0.0 down

Compute Node compute03 /etc/network/interfaces:

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface

auto ethO

iface eth0 inet static
address 192.168.220.53
netmask 255.255.255.0
network 192.168.220.0
broadcast 192.168.220.255
gateway 192.168.220.1
dns—-* options are implemented by the resolvconf package, if installed
dns—-nameservers 192.168.220.254
dns—-search dmz-pod2.lab

Public Network: Bridged Interface
auto ethl
iface ethl inet manual
up ifconfig $IFACE 0.0.0.0 up
up ip link set S$IFACE promisc on

Networking 11

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

down ifconfig $IFACE 0.0.0.0 down
Restart networking:
/etc/init.d/networking restart
Time Synchronization
Install NTP:
apt-get install -y ntp
Add your NTP server(s) by editing /etc/ntp.conf. Note: OpenStack requires that clocks be synchronized. Our

example uses a FAKE server called ntp.corp.com as the NTP server. Make sure you change ntp.corp.com to
your real NTP server. Lastly, make sure the NTP server name resolves.

vi /etc/ntp.conf

server ntp.corp.com

Restart NTP for the changes to take effect

service ntp restart

Verify that you are pulling time:

ntpg -p

remote refid st t when poll reach delay offset Jjitter
*ntp.corp. .GPS. 1 u 185 512 377 76.035 0.053 0.033
cheezum.mattnor 129.7.1.66 2 u 8d 1024 0 47.731 -0.555 0.000
ntp2.rescomp.be .STEP. 16 u - 1024 0 0.000 0.000 0.000
216.45.57.38 204.123.2.5 2 u 54h 1024 0 12.607 0.808 0.000
lithium.constan 128.4.1.1 2 u 8d 1024 0 69.861 0.206 0.000
europium.canoni 193.79.237.14 2 u 54h 1024 0 144.040 -1.455 0.000

Load Balancer Node Installation

Ensure you have completed the steps in the General Installation Steps for All Nodes section before
proceeding. Perform the following steps on nodes sIbO1 and slb02.

Keepalived & HAProxy

Edit /etc/sysctl.conf to allow Keepalived to associate a virtual IP address (VIP) that is not directly bound to
an interface on the node:

net.ipv4.ip_nonlocal_bind=1
Load in sysctl settings from /etc/sysctl.conf:
sysctl -p

Install Keepalived and HAProxy packages:

Time Synchronization 12

http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#General_Installation_Steps_for_All_Nodes

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

apt—-get install -y keepalived haproxy

Create the /var/lib/haproxy directory:

mkdir /var/lib/haproxy

Make sure /var/lib/haproxy is owned by root. Change the file ownership if needed:
chown root:root /var/lib/haproxy/

Configure the /etc/keepalived/keepalived.conf file for sIbO1 with the contents below.
Change [YOUR_DOMAIN_NAME] with your actual domain name. The keepalived.conf includes the
following sections:

¢ global_defs- Global parameters affect the whole process behavior. There may be several 'global'
sections if needed, but their parameters will only be merged.

¢ vrrp_script- Keepalived supports a VRRP scripting framework to extend base functionality. The
vrrp_script named haproxy will check the status of the haproxy service every 2 seconds and add 2
points of priority if the status is running. If the haproxy service is not running, the backup HAProxy
Node will become the primary and begin passing traffic for the virtual_ipaddress(es).

¢ vrrp_instance- I[s where you define configuration paramters for virtual gateway addresses. sIbOl is
configured as the primary gateway for 192.168.220.40 (Controller Cluster) and the backup gateway
for 192.168.220.60 (Swift Proxy Cluster). Accordingly, slb02 is configured as the primary for
192.168.220.60 and the backup for 192.168.220.40.

global_defs {
notification_email {
root@[YOUR_DOMAIN_NAME]
}
notification_email_ from keepalived@[YOUR_DOMAIN_NAME]
smtp_server localhost
smtp_connect_timeout 30
router_id slbO01l
}

vrrp_script haproxy {

script "killall -0 haproxy"
interval 2
weight 2

}
vrrp_instance 50 {
virtual_router_id 50

Advert interval
advert_int 1

for electing MASTER, highest priority wins.
priority 101
state MASTER
interface ethO
virtual_ipaddress {
192.168.220.40 dev ethO
}
track_script {
haproxy
}
}

vrrp_instance 51 {
virtual_router_id 51

Keepalived & HAProxy 13

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Advert interval
advert_int 1

for electing MASTER, highest priority wins.
priority 100
state BACKUP
interface ethO
virtual_ ipaddress {
192.168.220.60 dev ethO

}
track_script {

haproxy

Configure /etc/keepalived/keepalived.conf for sIb02 with the following contents. Change
[YOUR_DOMAIN_NAME] with your actual domain name.

global_defs {
notification_email {
root@[YOUR_DOMAIN_NAME]
}
notification_email_ from keepalived@[YOUR_DOMAIN_NAME]
smtp_server localhost
smtp_connect_timeout 30
router_id slb02
}

vrrp_script haproxy {

script "killall -0 haproxy"
interval 2
welght 2

}

vrrp_instance 50 {
virtual_router_id 50
Advert interval
advert_int 1
for electing MASTER, highest priority wins.
priority 100
state BACKUP
interface ethO
virtual_ipaddress {

192.168.220.40 dev ethO
}
track_script {
haproxy

}

vrrp_instance 51 {
virtual_router_id 51
Advert interval
advert_int 1
for electing MASTER, highest priority wins.
priority 101
state MASTER
interface ethO
virtual_ipaddress {

192.168.220.60 dev ethO
}
track_script {
haproxy

Keepalived & HAProxy

14

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Configure the /etc/haproxy/haproxy.cfg file for slbO1 with the contents below. HAProxy's configuration
process involves 3 major sources of parameters:

® The arguments from the command-line, which always take precedence.
® The "global" section, which sets process-wide parameters.
¢ The proxies sections which can take form of "defaults", "listen", "frontend" and "backend".

The following provides additional details of the haproxy.cfg file:

¢ global- Sets process-wide parameters for load-balancing traffic. Global parameters can be overriden
by server-specific configurations within thelisten section of the haproxy.cfg file.

¢ defaults- The "defaults" section sets default parameters for all other sections following its
declaration. Those default parameters are reset by the next "defaults" section. The name is optional
but its use is encouraged for better readability.

e listen- A "listen" section defines a complete proxy with its front-end (i.e. listening VIP) and
back-end (i.e. real IP of servers) parts combined in one section. Currently two major proxy modes are
supported: "tcp", also known as layer 4 and "http", also known as layer 7. In layer 4 mode, HAProxy
simply forwards bidirectional traffic between two sides. In layer 7 mode, HAProxy analyzes the
protocol and can interact with it by allowing, blocking, switching, adding, modifying, or removing
arbitrary content in requests or responses based on configurable criteria.

global
chroot
daemon
group haproxy

/var/lib/haproxy

log 192.168.220.81 localoO
maxconn 4000

pidfile /var/run/haproxy.pid
user haproxy
defaults

log global

maxconn 8000

option redispatch

retries 3

timeout http-request 10s
timeout queue 1m

timeout connect 10s
timeout client 1m

timeout server 1m

timeout check 10s

listen dashboard_cluster
bind 192.168.220.40:80

balance source

option tcpka

option httpchk

option tcplog

server control0l 192.168.220.
server control02 192.168.220.
server control03 192.168.220.

listen galera_cluster
bind 192.168.220.40:3306
balance source

mode tcp

option httpchk

server control0l 192.168.
control02 192.168.
control03 192.168

220.
220.
.220.

server
server

Keepalived & HAProxy

41:

42

41:
42

43

80 check inter 2000 rise 2

:80 check inter 2000 rise 2
43:

80 check inter 2000 rise 2

3306 check port 9200 inter
3306 check port 9200 inter

:3306 check port 9200 inter

fall
fall
fall

2000
2000
2000

al

rise 2 fall 5
rise 2 fall 5
rise 2 fall 5

15

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

listen glance_api_cluster

bind 192.168.220.40:9292

balance source

option tcpka

option httpchk

option tcplog

server control0l 192.168.220.41:9292 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:9292 check inter 2000 rise fall
server control03 192.168.220.43:9292 check inter 2000 rise 2 fall 5

[\S]
(€]

listen glance_registry_cluster

bind 192.168.220.40:9191

balance source

option tcpka

option tcplog

server control0l 192.168.220.41:9191 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:9191 check inter 2000 rise fall
server control03 192.168.220.43:9191 check inter 2000 rise 2 fall 5

N
a

listen keystone_admin_cluster

bind 192.168.220.40:35357

balance source

option tcpka

option httpchk

option tcplog

server control0l 192.168.220.41:35357 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:35357 check inter 2000 rise 2 fall 5
server control03 192.168.220.43:35357 check inter 2000 rise 2 fall 5

listen keystone_public_internal_cluster

bind 192.168.220.40:5000

balance source

option tcpka

option httpchk

option tcplog

server control0l 192.168.220.41:5000 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:5000 check inter 2000 rise 2 fall 5
server control03 192.168.220.43:5000 check inter 2000 rise 2 fall 5

listen memcached_cluster

bind 192.168.220.40:11211

balance source

option tcpka

option tcplog

server control0l 192.168.220.41:11211 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:11211 check inter 2000 rise 2 fall 5
server control03 192.168.220.43:11211 check inter 2000 rise 2 fall 5

listen nova_compute_apil_cluster

bind 192.168.220.40:8773

balance source

option tcpka

option tcplog

server control0l 192.168.220.41:8773 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:8773 check inter 2000 rise 2 fall 5
server control03 192.168.220.43:8773 check inter 2000 rise 2 fall 5

listen nova_compute_api2_cluster
bind 192.168.220.40:8774
balance source

option tcpka

option httpchk

option tcplog

Keepalived & HAProxy

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

server control0l 192.168.220.41:8774 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:8774 check inter 2000 rise fall
server control03 192.168.220.43:8774 check inter 2000 rise 2 fall 5

N
(€]

listen nova_compute_api3_cluster

bind 192.168.220.40:8775

balance source

option tcpka

option tcplog

server control0l 192.168.220.41:8775 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:8775 check inter 2000 rise fall
server control03 192.168.220.43:8775 check inter 2000 rise 2 fall 5

N
al

listen nova_volume_cluster

bind 192.168.220.40:8776

balance source

option tcpka

option httpchk

option tcplog

server control0l 192.168.220.41:8776 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:8776 check inter 2000 rise fall
server control03 192.168.220.43:8776 check inter 2000 rise 2 fall 5

[\S]
(€]

listen novnc_cluster

bind 192.168.220.40:6080

balance source

option tcpka

option tcplog

server control0l 192.168.220.41:6080 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:6080 check inter 2000 rise fall
server control03 192.168.220.43:6080 check inter 2000 rise 2 fall 5

N
a

listen quantum_api_cluster

bind 192.168.220.40:9696

balance source

option tcpka

option httpchk

option tcplog

server control0l 192.168.220.41:9696 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:9696 check inter 2000 rise fall
server control03 192.168.220.43:9696 check inter 2000 rise 2 fall 5

N
(€]

listen swift_proxy_cluster

bind 192.168.220.60:8080

balance source

option tcplog

option tcpka

server swiftproxy0l 192.168.220.61:8080 check inter 2000 rise 2 fall 5
server swiftproxy02 192.168.220.62:8080 check inter 2000 rise 2 fall 5

Configure the /etc/haproxy/haproxy.cfg file for sIb02 with the contents below.

global
chroot /var/lib/haproxy
daemon
group haproxy
log 192.168.220.82 local0O
maxconn 4000
pidfile /var/run/haproxy.pid
user haproxy

defaults
log global

Keepalived & HAProxy

maxconn
option

retries
timeout
timeout
timeout
timeout
timeout
timeout

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

8000

redispatch

3

http-request 10s
queue 1m

connect 10s
client 1m

server 1m

check 10s

listen dashboard_cluster
bind 192.168.220.40:80

balance
option
option
option
server
server
server

source

tcpka

httpchk

tcplog

control0l 192.168.
control02 192.168
control03 192.168.

listen galera_cluster
bind 192.168.220.40:3306

balance
option

source

httpchk

server control0l 192.168.
server control02 192.168.
server control03 192.168.

listen glance_api_cluster
bind 192.168.220.40:9292

balance
option
option
option
server
server
server

source

tcpka

httpchk

tcplog

control0l 192.168.
control02 192.168
control03 192.168.

220.
.220.
220.

220.
220.
220.

220.
.220.
220.

listen glance_registry_cluster
bind 192.168.220.40:9191

balance
option
option
server
server
server

source

tcpka

tcplog
control0l 192.168.220.
control02 192.168.220.
control03 192.168.220.

listen keystone_admin_cluster
bind 192.168.220.40:35357

balance
option
option
option
server
server
server

listen keystone_public_internal_cluster

source

tcpka

httpchk
tcplog
control0l 192.168.220
control02 192.168.220
control03 192.168.220

bind 192.168.220.40:5000

balance
option
option
option

source

tcpka
httpchk
tcplog

42

.41
42
.43

41:
42
43:

41:
42
43:

41:
: 9292
43:

41:
42
43:

80 check inter 2000 rise 2
80 check inter 2000 rise 2
80 check inter 2000 rise 2

3306
3306
3306

9292

9292

9191
9191
9191

check
check
check

check
check
check

check
check
check

port 9200 inter
port 9200 inter
port 9200 inter

2000
2000
2000

rise
rise
rise

inter
inter
inter

2000
2000
2000

rise
rise
rise

inter
inter
inter

fall
fall
fall

2000
2000
2000

a

rise 2 fall 5
rise 2 fall 5
rise 2 fall 5

2 fall 5

N

fall

a

2 fall 5

2 fall 5

[\S]

fall

(€]

2 fall 5

35357 check inter 2000 rise 2 fall 5
35357 check inter 2000 rise 2 fall 5
35357 check inter 2000 rise 2 fall 5

server control0l 192.168.220.41:5000 check inter 2000 rise 2 fall 5

Keepalived & HAProxy

18

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

server control02 192.168.220.42:5000 check inter 2000 rise 2 fall 5
server control03 192.168.220.43:5000 check inter 2000 rise 2 fall 5

listen memcached_cluster
bind 192.168.220.40:11211
balance source
option tcpka
option tcplog
server control0l 192.168.220.41:11211 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:11211 check inter 2000 rise 2 fall 5
server control03 192.168.220.43:11211 check inter 2000 rise 2 fall 5

listen nova_compute_apil_cluster
bind 192.168.220.40:8773
balance source
option tcpka
option tcplog
server control0l 192.168.220.41:8773 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:8773 check inter 2000 rise fall
server control03 192.168.220.43:8773 check inter 2000 rise 2 fall 5

N
@]

listen nova_compute_api2_cluster
bind 192.168.220.40:8774
balance source
option tcpka
option httpchk
option tcplog
server control0l 192.168.220.41:8774 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:8774 check inter 2000 rise fall
server control03 192.168.220.43:8774 check inter 2000 rise 2 fall 5

N
al

listen nova_compute_api3_cluster
bind 192.168.220.40:8775
balance source
option tcpka
option tcplog
server control0l 192.168.220.41:8775 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:8775 check inter 2000 rise fall
server control03 192.168.220.43:8775 check inter 2000 rise 2 fall 5

N
(€]

listen nova_volume_cluster
bind 192.168.220.40:8776
balance source
option tcpka
option httpchk
option tcplog
server control0l 192.168.220.41:8776 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:8776 check inter 2000 rise fall
server control03 192.168.220.43:8776 check inter 2000 rise 2 fall 5

N
a

listen novnc_cluster
bind 192.168.220.40:6080
balance source
option tcpka
option tcplog
server control0l 192.168.220.41:6080 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:6080 check inter 2000 rise fall
server control03 192.168.220.43:6080 check inter 2000 rise 2 fall 5

[\S]
(€]

listen quantum_api_cluster
bind 192.168.220.40:9696
balance source
option tcpka
option httpchk

Keepalived & HAProxy

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

option tcplog

server control0l 192.168.220.41:9696 check inter 2000 rise 2 fall 5
server control02 192.168.220.42:9696 check inter 2000 rise 2 fall 5
server control03 192.168.220.43:9696 check inter 2000 rise 2 fall 5

listen swift_proxy_cluster
bind 192.168.220.60:8080
balance source
option tcplog
option tcpka
server swiftproxy0l 192.168.220.61:8080 check inter 2000 rise 2 fall 5
server swiftproxy02 192.168.220.62:8080 check inter 2000 rise 2 fall 5
Set "ENABLED" to "1" in /etc/default/haproxy
ENABLED=1
Restart Keepalived and HAProxy services:

/etc/init.d/keepalived restart
/etc/init.d/haproxy restart

General Installation Steps for All Swift Nodes

Make sure to complete the General Installation Steps for All Nodes section before proceeding. Install Swift
and other basic packages:

apt-get install -y swift openssh-server rsync memcached python-netifaces python-xattr python-memce
Create the Swift configuration directory:

mkdir -p /etc/swift

Create the Swift configuration file. Note: This file should be identical on all Swift nodes.

vi /etc/swift/swift.conf

[swift-hash]
swift_hash_path_suffix = Gdr8ny7YyWqgy2

Change the ownership of the Swift directory:

chown -R swift:swift /etc/swift/

Swift Storage Node Installation Steps

Ensure you have completed the steps in the General Installation Steps for All Nodes and General Installation
Steps for All Swift Nodes sections before proceeding. Run these commands on nodes swift01, swift02 and
swift03. Install the Swift Storage Node packages:

apt-get install -y swift-account swift-container swift-object xfsprogs parted

For each of the hard disks other than the Ubuntu installation disk (i.e. /dev/sda), create an XFS volume with a
single partition. Our example uses five hard disks (/dev/sdb - /dev/sdf) per Storage Node. Repeat this step for

General Installation Steps for All Swift Nodes 20

http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#General_Installation_Steps_for_All_Nodes
http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#General_Installation_Steps_for_All_Nodes
http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#General_Installation_Steps_for_All_Swift_Nodes
http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#General_Installation_Steps_for_All_Swift_Nodes

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

each disk that will be used for Swift storage. Note: You can ignore the following message when using the
parted commands "Information: You may need to update /etc/fstab"

parted /dev/sdb mklabel msdos

parted -a optimal /dev/sdb mkpart primary ext2 0% 100%

mkfs.xfs —-i size=1024 /dev/sdbl

echo "/dev/sdbl /srv/node/sdbl xfs noatime,nodiratime,nobarrier,logbufs=8 0 0" >> /etc/fstab
mkdir -p /srv/node/sdbl

mount /srv/node/sdbl

Change the ownership of the mount directory:

chown -R swift:swift /srv/node

Create an Rsync configuration file on each Storage Node. In the following example, replace
[STORAGE_NET_IP] with the node's storage network IP address (i.e. swift01 = 192.168.222.71):

vi /etc/rsyncd.conf

uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid

address = [STORAGE_NET_IP]
[account]
max connections = 2

path = /srv/node/
read only = false

lock file = /var/lock/account.lock
[container]
max connections = 2

path = /srv/node/
read only = false

lock file = /var/lock/container.lock
[object]
max connections = 2

path = /srv/node/
read only = false
lock file = /var/lock/object.lock

Edit the following line in /etc/default/rsync:
RSYNC_ENABLE = true
Start rsync daemon:

service rsync start

Edit /etc/swift/account-server.conf with the following contents. Replace [STORAGE_NET_IP] with the
node's storage network IP address (i.e. swift01 = 192.168.222.71):

vi /etc/swift/account-server.conf

[DEFAULT]
bind_ip =

[STORAGE_NET_IP]
workers = 2

Swift Storage Node Installation Steps 21

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

[pipeline:main]
pipeline = account-server

[app:account-server]
use = egg:swift#account

[account-replicator]
[account—-auditor]

[account—-reaper]

Edit /etc/swift/container-server.conf with the following contents. Replace [STORAGE_NET_IP] with the
node's storage network IP address (i.e. swift01 = 192.168.222.71):

vi /etc/swift/container-server.conf
[DEFAULT]

bind_ip =

[STORAGE_NET_IP]
workers = 2

[pipeline:main]
pipeline = container-server

[app:container-server]
use = egg:swift#container

[container—-replicator]
[container-updater]

[container—-auditor]

Create /etc/swift/object-server.conf with the following contents. Replace [STORAGE_NET_IP] with the
node's storage network IP address (i.e. swift01 = 192.168.222.71):

vi /etc/swift/object-server.conf
[DEFAULT]
bind_ip = [STORAGE_NET_TIP]

workers = 2

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object

[object-replicator]

[object-updater]

[object—-auditor]

[object-expirer]

Start the storage services.

Note: At this point, the ring files will not be present on the storage nodes. This will cause the *-replicator

services to fail to start properly. After you create the ring files on the first proxy node (in the next section)
and distribute them to the storage nodes, a service restart should allow all Swift services to start properly.

Swift Storage Node Installation Steps

swift-init
swift-init
swift-init
swift-init
swift—-init
swift-init
swift-init
swift—-init
swift-init
swift-init
swift-init

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

object-server start
object-replicator start
object-updater start
object-auditor start
container-server start
container-replicator start
container-updater start
container—-auditor start
account—-server start
account-replicator start
account-auditor start

Make sure you repeat these steps for every Storage Node.

Swift Proxy Node Installation Steps

Ensure you have completed the steps in the General Installation Steps for All Nodes and General Installation
Steps for All Swift Nodes sections before proceeding. Perform these steps on nodes swiftproxy0O1 and
swiftproxy02. First, install the proxy node packages:

apt—-get install -y swift-proxy memcached python-keystoneclient python-swiftclient swift-plugin-s3

Modify memcached to bind to the storage network interface (192.168.222.x in our example). Edit the
following line in /etc/memcached.conf, changing:

-1 127.0.0.1
to
-1

[STORAGE_NET_IP]

Restart the memcached server:

service memcached restart

If it does not exist, create the /etc/swift/ directory:

mkdir /etc/swift/

If /etc/swift and /var/cache/swift directories are not owned by the swift user and group, then change the
ownership of the directories:

chown -R swift:swift /etc/swift/
chown -R swift:swift /var/cache/swift/

Create /etc/swift/proxy-server.conf with the following contents:

[DEFAULT]
bind_port
workers
user

= 8080

32
swift

[pipeline:main]
pipeline catch_errors healthcheck cache ratelimit authtoken keystoneauth proxy-server

[app:proxy—-server]

use egg:swift#proxy
allow_account_management
account_autocreate true

true

Swift Proxy Node Installation Steps 23

http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#General_Installation_Steps_for_All_Nodes
http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#General_Installation_Steps_for_All_Swift_Nodes
http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#General_Installation_Steps_for_All_Swift_Nodes

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

[filter:keystoneauth]
use = egg:swift#keystoneauth
operator_roles = Member,admin, swiftoperator

[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
signing_dir = /var/cache/swift
auth_host = 192.168.220.40

auth_port = 35357

auth_protocol = http

auth_uri = http://192.168.220.40:5000
admin_tenant_name = services
admin_user = swift

admin_password = keystone_admin
delay_auth_decision = 10

[filter:cache]
use = egg:swift#memcache

memcache_servers = 192.168.222.61:11211,192.168.222.62:11211

[filter:catch_errors]
use = egg:swift#catch_errors

[filter:healthcheck]
use = egg:swift#healthcheck

[filter:ratelimit]

use = egg:swift#ratelimit
clock_accuracy = 1000
max_sleep_time_seconds = 60
log_sleep_time_seconds = 0

rate_buffer_seconds 5

account_ratelimit = 0

On all proxy nodes, create the account, container and object rings. The builder command is basically creating
a builder file with a few parameters. The parameter with the value of 18 represents 2 ~ 18th, this is the value
of the partition size. Set this ?partition power? value based on the total amount of storage you expect your
entire ring to use. The value of 3 represents the number of replicas of each object, with the last value being
the number of hours to restrict moving a partition more than once. Additional information regarding Swift
ring preparation can be found here.

cd /etc/swift

swift-ring-builder account.builder create 18 3 1
swift-ring-builder container.builder create 18 3 1
swift-ring-builder object.builder create 18 3 1

On all proxy nodes, for every storage device on each storage node add entries to each ring. This example
prepares the account, container and object rings for storage node swift01 (192.168.222.71) with a partition in
zone 1. The mount point of this partition is /srv/node/sdb1 and the path in rsyncd.conf is /srv/node/, the
DEVICE would be sdbl and the commands would look like:

swift-ring-builder account.builder add z1-192.168.222.71:6002/sdbl 100
swift-ring-builder container.builder add z1-192.168.222.71:6001/sdbl 100
swift-ring-builder object.builder add z1-192.168.222.71:6000/sdbl 100

Note: Make sure not to place all devices in the same zone (i.e. z1). It is recommended to configure the zones
as high-level as possible to create the greatest amount of isolation. Some considerations can include physical
location, power availability, and network connectivity. For example, in a small cluster you might decide to
split the zones up by cabinet, with each cabinet having its own power and network connectivity. Since our

Swift Proxy Node Installation Steps 24

http://docs.openstack.org/grizzly/openstack-object-storage/admin/content/preparing-the-ring.html

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

deployment only uses 3 storage nodes, each node should be in its own zone. However, it is recommended to

have a minimum of 5 zones in a production-level Swift deployment.

On all proxy nodes, verify the ring contents for each ring:

swift-ring-builder /etc/swift/account.builder
swift-ring-builder /etc/swift/container.builder
swift-ring-builder /etc/swift/object.builder

Your output should look similar to this:

root@swiftproxyOl:~# swift-ring-builder /etc/swift/account.builder
/etc/swift/account.builder, build version 15

262144 partitions, 3 replicas, 3 zones, 15 devices, 0.00 balance

The minimum number of hours before a partition can be reassigned is 1

Devices: id =zone ip address port name weight partitions balance meta
0 3 192.168.222.73 6002 sdel 1.00 52429 0.00
1 2 192.168.222.72 6002 sddl 1.00 52429 0.00
2 3 192.168.222.73 6002 sdcl 1.00 52429 0.00
3 2 192.168.222.72 6002 sdbl 1.00 52429 0.00
4 3 192.168.222.73 6002 sdbl 1.00 52429 0.00
5 1 192.168.222.71 6002 sdbl 1.00 52429 0.00
6 1 192.168.222.71 6002 sdcl 1.00 52429 0.00
7 2 192.168.222.72 6002 sdfl 1.00 52429 0.00
8 1 192.168.222.71 6002 sddl 1.00 52428 -0.00
9 2 192.168.222.72 6002 sdcl 1.00 52429 0.00

10 1 192.168.222.71 6002 sdel 1.00 52429 0.00
11 1 192.168.222.71 6002 sdfl 1.00 52429 0.00
12 3 192.168.222.73 6002 sdfl 1.00 52429 0.00
13 2 192.168.222.72 6002 sdel 1.00 52428 -0.00
14 3 192.168.222.73 6002 sddl 1.00 52428 -0.00

On swiftproxy01, rebalance the rings. Note: Rebalancing rings can take a while. You may get a message

about a balance value and that you need to rebalance/push after the minimum 1 hour. If so, recheck the status

after an hour.

swift-ring-builder account.builder rebalance
swift-ring-builder container.builder rebalance
swift-ring-builder object.builder rebalance

On swiftproxy01l, copy the account.ring.gz, container.ring.gz, and object.ring.gz files to swiftproxy02 and the

3 storage nodes in /etc/swift. Also make sure all the files in /etc/swift on all Swift nodes are owned by the
swift user:

chown -R swift:swift /etc/swift
Start the Proxy services:
swift-init proxy start

REMINDER: After you have copied over the ring files and successfully restarted the proxy service, make
sure you restart all Swift Storage Node services in the Swift Storage Node section of the document.

Verify the Swift Installation

You can run verification commands from the proxy server or any server with access to Keystone. Keep in
mind that proxy nodes are configured to use Keystone for user authentication. As a result, you MUST

Verify the Swift Installation

25

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

complete the Controller Node Installation steps and ensure Keystone is operational before proceeding with
Swift verification.

Verify that you can successfully authenticate against Keystone using the Swift authentication credentials:

apt—-get install -y curl

curl -s —-d "{\"auth\":{\"passwordCredentials\": {\"username\": \"swift\", \"password\": \"keystone
You should receive output similar to the following:

{"access": {"token": {"issued_at": "2013-04-02T14:55:31.149327", "expires": "2013-04-03T14:55:312"
null, "enabled": true, "id": "b38d88aad6314870b746e7d60808e59%9a", "name": "services"}}, "serviceCat
"http://192.168.220.40:8774/v2/b38d88aad6314870b746e7d60808e59a", "region": "RegionOne", "internal
"id": "45a336cb74e04el1lab95c0ea28b699d6", "publicURL": "http://192.168.220.40:8774/v2/b38d88aad¢
"name": "nova"}, {"endpoints": [{"adminURL": "http://192.168.220.40:9696/", "region": "RegionOne",
"259fef5e66814f47ac1934d3cf522a3d", "publicURL": "http://192.168.220.40:9696/"}], "endpoints_links
{"adminURL": "http://192.168.220.40:9292/v2", "region": "RegionOne", "internalURL": "http://192.1¢
"publicURL": "http://192.168.220.40:9292/v2"}], "endpoints_links": [], "type": "image", "name": "c
"http://192.168.220.40:8776/v1/b38d88aad6314870b746e7d60808e59a", "region": "RegionOne", "internal
"id": "0a2c69157d5948a%9ae8ecee5c65a6d2b", "publicURL": "http://192.168.220.40:8776/v1/b38d88aad¢
"name": "cinder"}, {"endpoints": [{"adminURL": "http://192.168.220.40:8773/services/Admin", "regic
"internalURL": "http://192.168.220.40:8773/services/Cloud", "id": "05f85b8aacbd4c87b680dcc2fbbdab:
"endpoints_links": [], "type": "ec2", "name": "ec2"}, {"endpoints": [{"adminURL": "http://192.168.
"http://192.168.220.60:8080/v1/AUTH_b38d88aad6314870b746e7d60808e59%9a", "id": "4alaf526137341c0a68z
"http://192.168.220.60:8080/v1/AUTH_b38d88aad6314870b746e7d60808e59%9a"}], "endpoints_links": [], "t
"http://192.168.220.40:35357/v2.0", "region": "RegionOne", "internalURL": "http://192.168.220.40:°
"http://192.168.220.40:5000/v2.0"}], "endpoints_links": [], "type": "identity", "name": "keystone'
"ed69664ac78ad4b65a36d63da6b760863", "roles": [{"name": "_member_"}, {"name": "admin"}], "name": "¢
"9fe2ff9ee4384b1894a90878d3e92bab", "6a553ae3be3c4f8c8fe079830d4102a5"]}}}

Use the swift client stat command to make sure you can view the contents of the ring. You can run these
commands from the proxy server or any server with the swift client and access to Keystone.

swift -V 2 -A http://192.168.220.40:5000/v2.0/ -V 2 -U services:swift -K keystone_admin stat
Account: AUTH_3eccdb2a9331419c96ac9f£336110b65
Containers: 1
Objects: 2
Bytes: 0
Accept—-Ranges: bytes
X-Timestamp: 1363989109.30329
X-Trans—Id: tx147dd9983ac54aflb71lcba56lae2aa%a
Content-Type: text/plain; charset=utf-8

You can see that 1 container exists. Now, lets find out the name of the container:

swift -V 2 -A http://192.168.220.40:5000/v2.0/ -V 2 -U services:swift -K keystone_admin list
glance

Note: The glance container is created after the Controller cluster is built and an image has been uploaded to
Glance.

List the contents of the Glance container:

swift -V 2 -A http://192.168.220.40:5000/v2.0/ -V 2 -U services:swift -K keystone_admin list glanc
24164630-ba2f-436a-8bc6-43975717d5e5
858alldc-ed6l-4al8-a778-eabcb454ae45

Verify the Swift Installation 26

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Controller Node Installation

Ensure you have completed the steps in the General Installation Steps for All Nodes section before
proceeding. Run the following commands on nodes controlO1, control02 and control03.

MySQL WSREP and Galera Installation

Install MySQL and Galera dependencies:

apt-get install -y libaiol 1libssl0.9.8 mysgl-client-5.5 python-mysgldb
Download MySQL-WSREP and Galera:

wget -0 /tmp/mysgl-server-wsrep—-5.5.23-23.6-amd64.deb http://launchpad.net/codership-mysql/5.5/5.¢
wget -0 /tmp/galera-23.2.l1-amd64.deb http://launchpad.net/galera/2.x/23.2.1/+download/galera-23.2.

Install MySQL and Galera. Note: If you are prompted to create a root password during the Galera package
installation, please make note of the password you use as it will be needed when connecting to MySQL.:

dpkg -i /tmp/mysgl-server-wsrep-5.5.23-23.6-amd64.deb
dpkg -i /tmp/galera-23.2.1-amd64.deb

Change the default MySQL bind address. Change [CONTROLLER_MGT_IP] in the command to the
management [P address for each controller (i.e. controlO1 = 192.168.220.41):

sed —i 's/127.0.0.1/[CONTROLLER_MGT_IP]/g' /etc/mysqgl/my.cnf
Add the following line to /etc/rc.local on all controllers to allow MySQL to start automatically upon reboot:

service mysqgl start

Modify the default /etc/mysql/conf.d/wsrep.cnf file for controlO1:

bind-address=192.168.220.41
wsrep_provider=/usr/lib/galera/libgalera_smm. so
wsrep_cluster_name="controller_cluster"
wsrep_cluster_address="gcomm://"
wsrep_sst_method=rsync
wsrep_sst_auth=wsrep_sst:password

Modify the default /etc/mysql/conf.d/wsrep.cnf file for control02:

bind-address=192.168.220.42
wsrep_provider=/usr/lib/galera/libgalera_smm.so
wsrep_cluster_name="controller_cluster"
wsrep_cluster_address="gcomm://192.168.220.41"
wsrep_sst_method=rsync
wsrep_sst_auth=wsrep_sst:password

Modify the default /etc/mysql/conf.d/wsrep.cnf file for control03:

bind-address=192.168.220.43
wsrep_provider=/usr/lib/galera/libgalera_smm.so
wsrep_cluster_name="controller_cluster"
wsrep_cluster_address="gcomm://192.168.220.42"
wsrep_sst_method=rsync
wsrep_sst_auth=wsrep_sst:password

Controller Node Installation 27

http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#General_Installation_Steps_for_All_Nodes

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Note: It is important to understand the gcomm address concept behind Galera. Only use an empty gcomm://
address when you create a NEW cluster. Never use it when your intention is to reconnect to an existing one.
After the Galera cluster is established, you should change the gcomm address on control01 from gcomm:// to
gcomm://192.168.220.42 or gcomm://192.168.220.43. Otherwise, control01 will not join the cluster upon
reboot. Make sure to also restart the mysql service when making changes to any of the associated
configuration files. It is equally important to understand how to restart an existing Galera cluster in the event
of a power outage.

Restart MySQL in the following order: controlO1, control02 and control03:
service mysqgl restart
Verify the Galera cluster has been established. The value should show 4 for all nodes in the cluster:

mysgl —-e "show global status where variable_name='wsrep_local_state';"

o +———+
| Variable_name | Value |
o +———+
| wsrep_local_state | 4 |
- +———+

MySQL WSREP and Galera Monitoring

Complete each of the steps below on each control node except for when a single node is specified.
Install xinetd:

apt-get install -y xinetd

Download the mysqlchk service:

wget https://raw.github.com/CiscoSystems/puppet-mysqgl/folsom_ha/templates/mysglchk -P /etc/xinetd.
Note: After functional testing is complete, it's recommended to secure the mysqlchk service. This can be
accomplished by editing the only_from and per_source values in /etc/xinetd.d/ to the subnet used by the
load-balancer nodes.

Edit /etc/xinetd.d/mysqlchk by changing <%= mysqlchk_script_dir %>/galera_chk to the following:
/usr/local/bin/galera_chk

Make sure root is the file owner:

1ls -1 /etc/xinetd.d/mysqglchk

If not, change the file permissions:

chown root:root /etc/xinetd.d/mysglchk

Add the mysqlcheck service to /etc/services by adding the following line:

mysglchk 9200/tcp # MySQL Galera health check script

Download the MySQL Galera health check script:

MySQL WSREP and Galera Installation 28

http://www.codership.com/wiki/doku.php?id=mysql_options
http://www.codership.com/
http://www.codership.com/wiki/doku.php?id=mysql_galera_restart

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

wget https://raw.github.com/CiscoSystems/puppet-mysgl/folsom_ha/templates/galera_chk -P /usr/local
Set the file to be executable:
chmod +x /usr/local/bin/galera_chk

Edit /ust/local/bin/galera_chk as follows. Change [CONTROLLER_MGT_IP] to the Management IP address
for each controller node (i.e. control01 = 192.168.220.41).

MYSQL_HOST="[CONTROLLER_MGT_IP]"
MYSQL_PORT="3306"
MYSQL_USERNAME="mysglchk_user"
MYSQL_PASSWORD="mysglchk_password"
MYSQL_OPTS="-N —-g —-A"
TMP_FILE="/dev/shm/mysqlchk.$$.out"
ERR_FILE="/dev/shm/mysqglchk.S.err"
FORCE_FAIL="/dev/shm/proxyoff"
MYSQL_BIN="/usr/bin/mysql"

Restart xinetsd:

service xinetd restart

Connect to MySQL and add the mysqlchk user to each controller in the cluster:

mysqgl

use mysqgl;

INSERT INTO user (Host,User,Password) VALUES('$', 'mysqglchk_user', PASSWORD ('mysqglchk_password'));
flush privileges;

Grant privileges for the mysqlchk user. Change [CONTROLLER_MGT_IP] to the Management IP address
for each controller node (i.e. control01 = 192.168.220.41).:

grant SUPER,PROCESS on *.* to 'mysglchk_user'@' [CONTROLLER MGT_IP]' IDENTIFIED BY 'mysglchk_passwc
quit;

Verify the operational status of the MySQL Galera health check service. From slb01 or sIb02, Telnet using
port 9200 (health check port) and make sure you get a "MySQL is running" message:

telnet 192.168.220.41 9200

Trying 192.168.220.41...

Connected to 192.168.220.41.

Escape character is '~]'.

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 43

<html><body>MySQL is running.</body></html>
Connection closed by foreign host.

Repeat the previous step for each control node.

Verify that you can access the MySQL database by using the Virtual IP address (VIP) of the Galera cluster:
mysqgl —umysqglchk_user -pmysqglchk_password -h192.168.220.40

For informational purposes, this is the command used by the health check script. This example is for
control01:

MySQL WSREP and Galera Monitoring 29

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

/usr/bin/mysql -N -gq —-A --host=192.168.220.41 --user=mysqglchk_user --password=mysqglchk_password —e¢
Upgrade Client Libraries

Several client libraries must be upgraded to support RabbitMQ Mirrored Queues.

Update the required client libraries:

apt—-get install -y python-pip
pip install kombu==2.4.7
pip install amgp==0.9.4

Check your version of anyjson:

pip freeze | grep anyjson

If anyjson is not 0.3.3, then install the correct version:

pip install anyjson==0.3.3

RabbitMQ Installation

Complete the following steps on each control node unless a specific node is referenced.

A newer version of RabbitMQ Server is required for the proper operation of clustering with OpenStack
services. First download RabbitMQ Server version 2.8.7:

wget -0 /tmp/rabbitmg-server_2.8.7-1_all.deb http://www.rabbitmg.com/releases/rabbitmg-server/v2.¢
Install RabbitMQ Server 2.8.7 dependencies:

apt-get install -y erlang-nox

Install RabbitMQ Server:

dpkg -i /tmp/rabbitmg-server_2.8.7-1_all.deb

Configure RabbitMQ Clustering. First, stop the rabbitmg-server service on all control nodes.

service rabbitmg-server stop

Clustering requires that the nodes have the same Erlang cookie. Copy the Erlang cookie from control01 to
control02 and control03:

scp /var/lib/rabbitmg/.erlang.cookie localadmin@192.168.220.42:/var/lib/rabbitmg/.erlang.cookie
scp /var/lib/rabbitmg/.erlang.cookie localadmin@192.168.220.43:/var/lib/rabbitmg/.erlang.cookie

Note: The above command requires root login (disabled by default in Ubuntu). If you do not have root
permissions, copy the Erlang cookie from /var/lib/rabbitmg/ to the /tmp directory of control02 and control03
and then to /var/lib/rabbitmg/. Also, make sure the file permissions match on all 3 nodes.

Now that all 3 control nodes have the same Erlang cookie, make sure that RabbitMQ will start:

service rabbitmg-server start

Upgrade Client Libraries 30

http://www.rabbitmq.com/ha.html

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Note: If RabbitMQ does not successfully start, do not proceed with clustering.

Clustering can be configured using rabbitmqctl commands or by modifying the RabbitMQ configuration file.
Our example uses the rabbitmqctl commands. You can see both approaches to configuring RabbitMQ
clustering here. Note: Joining a cluster implicitly resets the node, thus removing all resources and data that
were previously present on that node.

From control02:

rabbitmgctl stop_app
rabbitmgctl cluster rabbit@controlOl
rabbitmgctl start_app

Verify that control02 is now clustered with controlO1:

rabbitmgctl cluster_status

Cluster status of node rabbit@control02

[{nodes, [{disc, [rabbit@control01]}, {ram, [rabbit@control02]}1]},
{running_nodes, [rabbit@control0l, rabbit@control02]}]

...done.

From control03:

rabbitmgctl stop_app
rabbitmgctl cluster rabbit@control02
rabbitmgctl start_app

Verity that control03 has joined the cluster:

rabbitmgctl cluster_status

Cluster status of node rabbit@control03

[{nodes, [{disc, [rabbit@control01l]}, {ram, [rabbit@control03, rabbit@control02]}]},
{running_nodes, [rabbit@control02, rabbit@control0l, rabbit@control03]}]

...done.

Now that clustering is complete, secure RabbitMQ by removing the default (guest) user from only one of the
nodes in the cluster:

rabbitmgctl delete_user guest

From only one of the nodes in the cluster, create a RabbitMQ user account that will be used by OpenStack
services:

rabbitmgctl add_user openstack_rabbit_user openstack_rabbit_password

From only one of the nodes in the cluster, set the permissions for the new RabbitMQ user account:
rabbitmgctl set_permissions —-p / openstack_rabbit_user ".x" " _ x"m oW Sn

Verify the user settings:

rabbitmgctl list_users
rabbitmgctl list_user_permissions openstack_rabbit_user

RabbitMQ Installation 31

http://www.rabbitmq.com/clustering.html#setup

COE_Girizzly_Release:_High-Availability Manual_Installation_Guide
Keystone Installation
Install Keystone on every control node:
apt-get install -y keystone python-keyring
Remove the sqllite db:
rm /var/lib/keystone/keystone.db
Create a MySQL database for Keystone. The database needs to be created on only 1 control node.

mysqgl

CREATE DATABASE keystone;

GRANT ALL ON keystone.* TO 'keystone_admin'@'$%' IDENTIFIED BY 'keystone_db_pass';

GRANT ALL ON keystone.* TO 'keystone_admin'@'localhost' IDENTIFIED BY 'keystone_db_pass';
quit;

Note: From other controllers in the cluster, you can see that databases are replicated by Galera:
mysgl —-e "show databases;"

Edit the /etc/keystone/keystone.conf file on each controller. Change [CONTROLLER_MGT_IP] to the
management [P address of the control node (i.e. controlO1: bind_host = 192.168.220.41):

[DEFAULT]

admin_token = keystone_admin_token
bind_host = [CONTROLLER_MGT_1IP]
verbose = True

[sqll]

connection = mysqgl://keystone_admin:keystone_db_pass@192.168.220.40/keystone
idle_timeout = 30

[ssl]
enable = False

[signing]
token_format = UUID

Create a credential file and load it so credentials are not required for every OpenStack client command. Note:
This needs to be created on each node that you will run OpenStack commands from:

vi /root/openrc

export OS_TENANT_NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=keystone_admin

export OS_AUTH_URL="http://192.168.220.40:5000/v2.0/"
export OS_AUTH_STRATEGY=keystone

export SERVICE_TOKEN=keystone_admin_token

export SERVICE_ENDPOINT=http://192.168.220.40:35357/v2.0/

source /root/openrc

Verify that MySQL is listening on the VIP for the Keystone database. If you have any problems connecting
to the VIP, try the real IP address of a control node:

mysqgl -h192.168.220.40 -ukeystone_admin -pkeystone_db_pass keystone

Keystone Installation 32

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Restart Keystone:

service keystone restart

Synchronize the database on only one control node:

keystone-manage db_sync

Download the Keystone data script(Provided by Emilien Macchi):

wget https://raw.github.com/EmilienM/openstack-folsom-guide/master/scripts/keystone-data.sh
Edit the following fields in the script:

ADMIN_PASSWORD=$ { ADMIN_PASSWORD:-keystone_admin}

export SERVICE_TOKEN="keystone_admin_token"

export SERVICE_ENDPOINT="http://192.168.220.40:35357/v2.0/"
SERVICE_TENANT_NAME=${SERVICE_TENANT_ NAME:-services}

Edit the file permissions

chmod +x keystone-data.sh

Run the script to populate the Keystone database with data (users, tenants, services). Note: If you see a long
timeout and errors about "connection timeout", it may be related to your proxy setting. Remove the export of
your http/https proxies and re-run the script. You will have to re-add your proxies for any other external
downloads.

./keystone—-data.sh

Note: You can ignore the following CLI message when running the scripts and any future Keystone
commands:

WARNING: Bypassing authentication using a token & endpoint (authentication credentials are being
ignored).

Download the Keystone endpoint script (Provided by Emilien Macchi):
wget https://raw.github.com/EmilienM/openstack-folsom-guide/master/scripts/keystone-endpoints.sh
Edit the following fields in the script:

MySQL definitions
MYSQL_USER=keystone_admin
MYSQL_DATABASE=keystone
MYSQL_HOST=192.168.220.40
MYSQL_PASSWORD=keystone_db_pass

Keystone definitions

KEYSTONE_REGION=RegionOne
SERVICE_TOKEN=keystone_admin_token
SERVICE_ENDPOINT="http://192.168.220.40:35357/v2.0"

other definitions

MASTER="192.168.220.40"
SWIFT_MASTER="192.168.220.60"

Keystone Installation 33

https://raw.github.com/EmilienM/openstack-folsom-guide/master/scripts/keystone-data.sh
https://github.com/EmilienM/openstack-folsom-guide/blob/master/scripts/keystone-endpoints.sh

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Edit the file permissions

chmod +x keystone-endpoints.sh

Run the script to populate the Keystone database with service endpoints. Again, if you are using proxies then
you will need remove them from your export before running this command:

./keystone—endpoints.sh

Test connectivity to Keystone by using a curl request :

apt-get install curl openssl -y

curl —-d '{"auth": {"tenantName":

"passwordCredentials":{"username": "admin", "password":

If the above command is successful, you will receive output that includes a token and a list of service
endpoints. You may also want to verify the other service account credentials:

Glance

curl -s -d "{\"auth\":{\"passwordCredentials\":

Nova

curl -s -d "{\"auth\":{\"passwordCredentials\":

Swift

curl -s -d "{\"auth\":{\"passwordCredentials\":

Quantum

curl -s -d "{\"auth\":{\"passwordCredentials\":

Cinder

curl -s -d "{\"auth\":{\"passwordCredentials\":

{\"username\":

{\"username\":

{\"username\":

{\"username\":

{\"username\":

You can also use the Keystone client to verify the configuration:

keystone tenant-list
keystone user-list
keystone role-list
keystone service-list
keystone endpoint-1list

\"glance\", \"password\": \"keystc

\"nova\", \"password\": \"keystone

\"swift\", \"password\": \"keystor

\"quantum\", \"password\": \"keyst

\"cinder\", \"password\": \"keystc

Now that Keystone is operational, you may want to go back to the Verify the Swift Installation section to
ensure that Swift is fully operational. If Swift is inoperable, you will be unable to add images to Glance in the

next section.

Glance Installation

Install Glance API and Registry packages on all control nodes:

apt-get install -y glance—api glance-registry

Glance Installation

34

http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#Verify_the_Swift_Installation
http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#Glance_Installation

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Delete the glance.sqlite file created in the /var/lib/glance/ directory
rm /var/lib/glance/glance.sqglite
Create a MySQL database for Glance on only 1 control node:

mysql

CREATE DATABASE glance;

GRANT ALL ON glance.* TO 'glance'@'$' IDENTIFIED BY 'glance_pass';

GRANT ALL ON glance.* TO 'glance'@'localhost' IDENTIFIED BY 'glance_pass';
quit;

Edit the /etc/glance/glance-api.conf as follows. Replace [CONTROLLER_MGT_IP] with the controller
management [P address (i.e. controlO1: bind_host = 192.168.220.41). Make changes on each control node.:

[DEFAULT]

verbose = True

default_store = swift
bind_host = [CONTROLLER_MGT_IP]

sgl_connection=mysql://glance:glance_pass@192.168.220.40/glance
sgl_idle_timeout = 30

registry_host = 192.168.220.40

swift_store_auth_address = http://192.168.220.40:5000/v2.0/
swift_store_user = services:swift

swift_store_key = keystone_admin

swift_store_container = glance
swift_store_create_container_on_put = True

[keystone_authtoken]

auth_host = 192.168.220.40
auth_port = 35357

auth_protocol = http
admin_tenant_name = services
admin_user = glance
admin_password = keystone_admin

[paste_deploy]
flavor=keystone+cachemanagement

Edit the /etc/glance/glance-registry.conf as follows. Replace [CONTROLLER_MGT_IP] with the controller
management IP address (i.e. controlO1: bind_host = 192.168.220.41) Make changes on each control node.:

[DEFAULT]
verbose = True
bind_host = [CONTROLLER_MGT_IP]

sqgl_connection=mysqgl://glance:glance_pass@192.168.220.40/glance
sgql_idle_timeout = 30

[keystone_authtoken]

auth_host = 192.168.220.40
auth_port = 35357

auth_protocol = http
admin_tenant_name = services
admin_user = glance
admin_password = keystone_admin

[paste_deploy]
flavor=keystone

Restart the glance-api and glance-registry services:

Glance Installation 35

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

service glance—api restart; service glance-registry restart

The database tables are under version control and you use the following command on a new installation to
prevent the Image service from breaking possible upgrades. This command is used on only one of the
controllers:

glance-manage version_control 0

Synchronize the glance database on one control node (You may get a message about deprecation - you can
ignore):

glance-manage db_sync

Restart the services again to take into account the new modifications:

service glance-registry restart; service glance-api restart

Download the Cirros 0.3.1 cloud image to a controller node and then upload it to Glance:

wget http://download.cirros-cloud.net/0.3.1/cirros-0.3.1-x86_64-disk.img

glance add name="cirros" is_public=true disk_format=gcow2 container_format=ovf < cirros-0.3.1-x86_
Verify that Glance is serving the image:

glance image-list

Optionally, you can add the Ubuntu Precise image to Glance:

wget http://cloud-images.ubuntu.com/precise/current/precise-server—-cloudimg-amd64-diskl.img
glance add name="precise" is_public=true container_format=ovf disk_format=qcow2 < precise-server-c

Quantum Installation

Install the Quantum Server on all control nodes:

apt—-get install -y quantum-server quantum-plugin-openvswitch
Create the Quantum database on only one control node:

mysqgl

CREATE DATABASE quantum;

GRANT ALL ON quantum.* TO 'quantum'@'S$' IDENTIFIED BY 'quantum_pass';

GRANT ALL ON quantum.* TO 'quantum'@'localhost' IDENTIFIED BY 'quantum_pass';
quit;

Edit the /etc/quantum/quantum.conf file on all control nodes. Replace [CONTROLLER_MGT_IP] with the
controller management IP address (i.e. controlO1: bind_host = 192.168.220.41):

[DEFAULT]

bind_host = [CONTROLLER_MGT_IP]
rabbit_userid=openstack_rabbit_user
rabbit_password=openstack_rabbit_password
rabbit_ha_queues=True
rabbit_hosts=control01:5672,control02:5672,control03:5672
verbose = True

Quantum Installation 36

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide
log_file=/var/log/quantum/server.log

[keystone_authtoken]

auth_host = 192.168.220.40

auth_port = 35357

auth_protocol = http

admin_tenant_name = services

admin_user = gquantum

admin_password = keystone_admin

signing_dir = /var/lib/quantum/keystone-signing

Edit the OVS plugin configuration file /etc/quantum/plugins/openvswitch/ovs_quantum_plugin.ini on all
control nodes:

[DATABASE]
sgl_connection=mysql://quantum:quantum_pass@192.168.220.40/quantum
sgl_idle_timeout = 30

[OVS]
network_vlan_ranges = physnetl
bridge_mappings = physnetl:br-ex

[SECURITYGROUP]
firewall _driver = quantum.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver

Restart the quantum server:

service quantum-server restart
Nova Installation

Start by installing the Nova software packages on all Control Nodes:

apt-get install -y nova-api nova-conductor nova-consoleauth nova-scheduler nova-novncproxy
Create the Nova database on only one control node:

mysqgl

CREATE DATABASE nova;

GRANT ALL ON nova.* TO 'nova'@'%' IDENTIFIED BY 'nova_pass';

GRANT ALL ON nova.* TO 'nova'@'localhost' IDENTIFIED BY 'nova_pass';
quit;

Modify the authtoken section in the /etc/nova/api-paste.ini file on each control node to include the following:

[filter:authtoken]

paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
auth_host 192.168.220.40

auth_port = 35357

auth_protocol = http

admin_tenant_name = services

admin_user = nova

admin_password = keystone_admin

signing_dir = /tmp/keystone-signing-nova

Workaround for https://bugs.launchpad.net/nova/+bug/1154809
auth_version = v2.0

Edit the /etc/nova/nova.conf file with the following. Replace [CONTROLLER_MGT_IP] with the controller
node's management IP address (i.e. control01 = 192.168.220.41). Do this on each control node.:

Nova Installation 37

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

[DEFAULT]

sgl_idle_timeout=30
network_api_class=nova.network.quantumv2.api.API
quantum_url=http://192.168.220.40:9696
quantum_admin_auth_url=http://192.168.220.40:35357/v2.0
quantum_auth_strategy=keystone
quantum_admin_tenant_name=services
quantum_admin_username=quantum
quantum_admin_password=keystone_admin
firewall_driver=nova.virt.firewall.NoopFirewallDriver
service_quantum_metadata_proxy=true
quantum_metadata_proxy_shared_secret=quantum_proxy_secret
dhcpbridge_flagfile=/etc/nova/nova.conf
dhcpbridge=/usr/bin/nova-dhcpbridge

logdir=/var/log/nova

state_path=/var/lib/nova

lock_path=/var/lock/nova

iscsi_helper=tgtadm

libvirt_use_virtio_for_ bridges=True

verbose=true

ec2_private_dns_show_ip=True
api_paste_config=/etc/nova/api-paste.ini
image_service=nova.image.glance.GlancelImageService
rpc_backend=nova.rpc.impl_kombu

rabbit_ha_queues=True
rabbit_hosts=control01:5672,control02:5672,control03:5672
glance_api_servers=192.168.220.40:9292
service_down_time=60

rabbit_port=5672

rabbit_virtual_host=/
sqgl_connection=mysqgl://nova:nova_pass@192.168.220.40/nova
memcached_servers=192.168.220.41:11211,192.168.220.42:11211,192.168.220.43:11211
rabbit_userid=openstack_rabbit_user
rabbit_password=openstack_rabbit_password
metadata_listen=[CONTROLLER_MGT_IP]
ec2_listen=[CONTROLLER_MGT_TIP]
enabled_apis=ec2,osapi_compute, metadata
osapi_compute_listen=[CONTROLLER_MGT_TIP]
volume_api_class=nova.volume.cinder.API
auth_strategy=keystone

rootwrap_config= /etc/nova/rootwrap.conf
novncproxy_port=6080

novncproxy_host=0.0.0.0
novncproxy_base_url=http://192.168.220.40:6080/vnc_auto.html
novncproxy_host=[CONTROLLER_MGT_IP]

Note: The nova.conf in our example enables verbose logging. When the environment is functional, you may
want to consider changing verbose to false.

Synchronize the Nova database on only one control node (You may get a DEBUG message - You can ignore
this):

nova-manage db sync

Due to bug 856764 Kombu must be patched to support channel_error detection of Rabbit queues. First, see if
Kombu needs to be patched by grep'ing the file. You will receive no output if the file needs to be patched.
You will receive self.channel_errors = self.connection.channel_errors if the file does NOT need patching:

grep self.channel_errors /usr/lib/python2.7/dist-packages/nova/openstack/common/rpc/impl_kombu.py

If the impl_kombu.py needs patching, download the patched file:

Nova Installation 38

https://bugs.launchpad.net/oslo/+bug/856764

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

wget https://raw.github.com/CiscoSystems/puppet—coe/patch_support/files/impl_kombu.py.patch

Copy the patched impl_kombu.py to the /ust/lib/python2.7/dist-packages/nova/openstack/common/rpc/
directory:

cp impl_kombu.py /usr/lib/python2.7/dist-packages/nova/openstack/common/rpc/impl_kombu.py
Make sure the file is owned by root:root.

1ls -1 /usr/lib/python2.7/dist-packages/nova/openstack/common/rpc/impl_kombu.py
If impl_kombu.py is not owned by root, then change the file ownership:

chmod /usr/lib/python2.7/dist-packages/nova/openstack/common/rpc/impl_kombu.py
Restart nova-* services on all control nodes:

cd /etc/init.d/; for i in $(ls nova—-*); do sudo service $i restart; done
Check for the smiling faces on nova services to confirm your installation:

nova-manage service list

Also check that nova-api is running:

service nova-api status

Cinder Installation

Start by installing the Cinder software packages on all control nodes:

apt-get install -y cinder-api cinder-scheduler

Create the Cinder MySQL database on 1 control node:

mysqgl

CREATE DATABASE cinder;

GRANT ALL ON cinder.* TO 'cinder'@'%' IDENTIFIED BY 'cinder_pass';

GRANT ALL ON cinder.* TO 'cinder'@'localhost' IDENTIFIED BY 'cinder_pass';
quit;

Edit the /etc/cinder/api-paste.ini file on each control node.:

[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
service_protocol = http
service_host = 192.168.220.40
service_port = 5000

auth_host = 192.168.220.40
auth_port = 35357

auth_protocol = http
admin_tenant_name = services
admin_user = cinder
admin_password = keystone_admin
signing_dir = /var/lib/cinder

Cinder Installation 39

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Edit the /etc/cinder/cinder.conf configuration file on each control node. Note: The default volume_group is
being changed from cinder-volumes to nova-volumes. As mentioned in the Critical Reminders section, an
LVM Volume Group named nova-volumes must exist on each Compute Node.

[DEFAULT]

sgl_idle_timeout=30

rabbit_ha_queues=True
rabbit_hosts=control01:5672,control02:5672,control03:5672
rabbit_userid=openstack_rabbit_user
rabbit_password=openstack_rabbit_password

sql_connection = mysqgl://cinder:cinder_pass@192.168.220.40/cinder

osapi_volume_listen = [CONTROLLER_MGT_IP]
rootwrap_config = /etc/cinder/rootwrap.conf
api_paste_confg = /etc/cinder/api-paste.ini
iscsi_helper = tgtadm

volume_name_template = volume-%s
volume_group = nova-volumes

verbose = True

auth_strategy = keystone

state_path = /var/lib/cinder
lock_path = /var/lock/cinder
volumes_dir = /var/lib/cinder/volumes

Initialize the Cinder database on only one control node:

cinder—-manage db sync

Restart Cinder services on all control nodes:

service cinder-api restart; service cinder-scheduler restart

Horizon Installation

Start by installing the Horizon software packages on all control nodes:

apt-get install -y memcached libapache2-mod-wsgi openstack-dashboard

Next, modify the /etc/openstack-dashboard/local_settings.py file. Replace all loopback interface definitions
(i.e. 127.0.0.1) with the Controller Cluster VIP address (i.e. 192.168.220.40).

Change the memcached listening address in /etc/memcached.conf. Replace [CONTROLLER_MGT_IP] with
the controller management IP address (i.e. control01 = 192.168.220.41):

-1 [CONTROLLER_MGT_ IP]

Reload Apache and memcached on each control node:
service apache2 restart; service memcached restart
Access Horizon by using the following URL in your web browser. Use admin/keystone_admin for your

login credentials. If you have problems accessing Horizon by using the VIP (192.168.220.40), then try using
a real IP address of a control node (i.e. control01 = 192.168.220.41):

http://192.168.220.40/horizon

Optionally, if you would like to remove the Ubuntu theme:

Horizon Installation 40

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

apt—-get purge -y openstack-dashboard-ubuntu-theme
Compute Node Installation

Ensure you have completed the steps in the General Installation Steps for All Nodes section before
proceeding. Follow these steps for compute01, compute02 and compute03 compute nodes.

Upgrade Client Libraries
Several client libraries must be upgraded to support RabbitMQ Mirrored Queues.

Update the required client libraries:

apt-get install -y python-pip
pip install kombu==2.4.7
pip install amgp==0.9.4

Check your version of anyjson:

pip freeze | grep anyjson

If anyjson is not 0.3.3, then install the correct version:

pip install anyjson==0.3.3

Quantum Installation

Install the Quantum software packages:

apt—-get -y install gquantum-plugin-openvswitch quantum-plugin-openvswitch—-agent gquantum-dhcp-agent
Check the status of the Open vSwitch services on each compute node:
service openvswitch-switch status

Start the Open vSwitch services on each compute node if they are not running:
service openvswitch-switch start

Compute Nodes require OVS bridges named "br-int" and "br-ex", and that "br-ex" is associated with the
Public Network interface (eth1 in our example):

ovs-vsctl add-br br-int
ovs-vsctl add-br br-ex
ovs—-vsctl add-port br-ex ethl

Edit the Quantum configuration file /etc/quantum/quantum.conf with the following. Note: Make sure the
names in rabbit_hosts= resolve:

#Under the default section

[DEFAULT]

rabbit_userid=openstack_rabbit_user
rabbit_password=openstack_rabbit_password
rabbit_ha_queues=True
rabbit_hosts=control01:5672,control02:5672,control03:5672
verbose = True

Compute Node Installation 41

http://docwiki.cisco.com/w/index.php?title=COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide#General_Installation_Steps_for_All_Nodes
http://www.rabbitmq.com/ha.html

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

log_file=/var/log/quantum/server.log

#Under the keystone_authtoken section
[keystone_authtoken]

auth_host = 192.168.220.40

auth_port = 35357

auth_protocol = http

admin_tenant_name = services

admin_user = quantum

admin_password = keystone_admin

signing_dir = /var/lib/quantum/keystone-signing

Edit the OVS plugin configuration file /etc/quantum/plugins/openvswitch/ovs_quantum_plugin.ini with:

#Under the database section
[DATABASE]
sgl_idle_timeout = 30

Edit the following under the OVS section. Note: 223:225 signifies the VLAN ID range used for tenant
VLANSs. Modify this range based on your deployment needs. These VLANs should be trunked to eth1 of
Compute Nodes and you must create a gateway address (i.e. 192.168.223.1 for VLAN 223) on your upstream
Layer-3 device.

[OVS]
network_vlan_ranges = physnetl:223:225
bridge_mappings = physnetl:br-ex

Using Quantum Security Groups instead of Nova Security Groups
[SECURITYGROUP]
firewall driver = gquantum.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver

Update the /etc/quantum/dhcp_agent.ini:

#Under the default section

[DEFAULT]

Required to run multiple Quantum DHCP agents

use_component_ext = True

Add root_helper due to bug: https://bugs.launchpad.net/quantum/+bug/1182616
root_helper = sudo quantum-rootwrap /etc/quantum/rootwrap.conf

Update the /etc/quantum/metadata_agent.ini:

metadata_proxy_shared_secret = gquantum_proxy_secret

Restart the Quantum services on each compute node:

service quantum-plugin-openvswitch—agent restart; service quantum-dhcp-agent restart; service quar
Nova Installation

Start by installing the Nova Compute software package on all Compute Nodes:

apt—-get install -y nova-compute

Edit the /etc/nova/nova.conf file with the following. Replace [COMPUTE_MGT_IP] with the compute
node's management IP address (i.e. computeO1 = 192.168.220.51):

[DEFAULT]

Quantum Installation 42

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

force_config _drive=true
network_api_class=nova.network.quantumv2.api.API
quantum_url=http://192.168.220.40:9696
quantum_admin_auth_url=http://192.168.220.40:35357/v2.0
quantum_auth_strategy=keystone
quantum_admin_tenant_name=services
quantum_admin_username=quantum
quantum_admin_password=keystone_admin

firewall driver=nova.virt.firewall.NoopFirewallDriver
libvirt_vif_driver=nova.virt.libvirt.vif.LibvirtHybridOVSBridgeDriver
service_quantum_metadata_proxy=true
quantum_metadata_proxy_shared_secret=quantum_proxy_secret
logdir=/var/log/nova

verbose=true

state_path=/var/lib/nova

lock_path=/var/lock/nova

iscsi_helper=tgtadm

libvirt_use_virtio_for_bridges=True
ec2_private_dns_show_ip=True
api_paste_config=/etc/nova/api-paste.ini
rabbit_ha_queues=True
rabbit_hosts=control01:5672,control02:5672,control03:5672
glance_api_servers=192.168.220.40:9292
sgl_connection=mysql://nova:nova_pass@192.168.220.40/nova
memcached_servers=192.168.220.40:11211
rabbit_userid=openstack_rabbit_user
rabbit_password=openstack_rabbit_password
metadata_host=192.168.220.40
volume_api_class=nova.volume.cinder.API
auth_strategy=keystone

rootwrap_config= /etc/nova/rootwrap.conf
vncserver_proxyclient_address=[COMPUTE_MGT_IP]
novncproxy_base_url=http://192.168.220.40:6080/vnc_auto.html
live_migration_flag=VIR_MIGRATE_UNDEFINE_SOURCE, VIR_MIGRATE_PEER2PEER, VIR_MIGRATE_LIVE

Note: The nova.conf in our example enables verbose logging. When the environment is functional, you may
want to consider changing verbose to false.

Verify that the /etc/nova/nova-compute.conf file looks like the following:

[DEFAULT]
libvirt_type=kvm
compute_driver=libvirt.LibvirtDriver

Restart the nova-compute service on each compute node:
service nova-compute restart
Create a credentials file so you can issue OpenStack client commands from the Compute Nodes:

vi /root/openrc

export OS_TENANT_NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=keystone_admin

export OS_AUTH_URL="http://192.168.220.40:5000/v2.0/"
export OS_AUTH_STRATEGY=keystone

export SERVICE_TOKEN=keystone_admin_token

export SERVICE_ENDPOINT=http://192.168.220.40:35357/v2.0/

source /root/openrc

Nova Installation 43

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Check for the smiling faces on nova services to confirm your installation:

nova-manage service list

Use the following steps if you would like to add support for migrating instances. The details of migration is

outside the scope of this document. Use the official OpenStack documntation to understand the details of
migration.

¢ Uncomment the following in /etc/libvirt/qemu.conf

cgroup_device_acl = [

"/dev/null", "/dev/full", "/dev/zero",
"/dev/random", "/dev/urandom",
"/dev/ptmx", "/dev/kvm", "/dev/kgemu",
"/dev/rtc", "/dev/hpet"

]

e Edit /etc/libvirt/libvirtd.conf file as follows:

listen_tls = 0
listen_tcp =1
auth_tcp = "none"

¢ Modify libvirtd_opts variable in /etc/init/libvirt-bin.conf file :
env libvirtd_opts="-d -1"
¢ Edit /etc/default/libvirt-bin file :
libvirtd_opts="-d -1"
® Restart libvirt :
service libvirt-bin restart
Cinder Installation

Start by installing Cinder software packages on all Compute Nodes:
apt-get install -y cinder-volume

Edit the /etc/cinder/cinder.conf file with the following. Replace [COMPUTE_MGT_IP] with the compute
node's management IP address (i.e. computeO1 = 192.168.220.51):

[DEFAULT]

iscsi_ip_address=[COMPUTE_MGT_IP]

rabbit_ha_queues=True
rabbit_hosts=control01:5672,control02:5672,control03:5672
rabbit_userid=openstack_rabbit_user
rabbit_password=openstack_rabbit_password

sql_connection = mysqgl://cinder:cinder_pass@192.168.220.40/cinder
rootwrap_config = /etc/cinder/rootwrap.conf
api_paste_confg = /etc/cinder/api-paste.ini

iscsi_helper = tgtadm

volume_name_template = volume-%s

volume_group = nova-volumes

verbose = True

auth_strategy = keystone

Cinder Installation

44

http://docs.openstack.org/grizzly/openstack-compute/admin/content/configuring-migrations.html

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

state_path = /var/lib/cinder
lock_path = /var/lock/cinder
volumes_dir = /var/lib/cinder/volumes

Restart the Cinder services on all compute nodes:

service cinder-volume restart; service tgt restart

Configuring OpenStack Networking (Quantum) and Deploying the First VM

Run the following commands from either a Compute Node or Controller Node. If something has to be done
on a specific node it will be called out. Note: If you have an issue with a Quantum command no being found,
you may need to do the following:

apt-get install -y python-pip
pip install -U cliff

Create your first tenant network. In our example, we use the admin tenant. Create additional networks and
associated subnets as needed. Note: The network is created with the "--shared" argument set so that the
network is available to all tenants. If you only want this network available to the tenant for which you set
your openrc file to then remove that argument:

keystone tenant-list
quantum net-create public223 --tenant_id admin --provider:network_type vlan —--provider:physical_ne

Create your first tenant subnet and associate it to the network you created in the previous step. The example
below uses .10-.250 for Instance IP addresses. Modify the allocation-pool and dns_nameservers based on
your deployment needs.

quantum subnet-create —--name 223-subnet --allocation-pool start=192.168.223.10,end=192.168.223.25(
If you skipped the earlier step of downloading an image and uploading it to glance, do that now:

wget http://cloud-images.ubuntu.com/precise/current/precise-server-cloudimg-amd64-diskl.img

glance add name="precise" is_public=true container_format=ovf disk_format=qcow2 < precise-server-—c

On a Compute Node create an SSH keypair and add the public key to Nova. Note: Leave the passphrase
empty when creating the keypair. If you have an issue with the Nova commands not being found, you will
need to to install the nova client support:

apt—-get -y install python-novaclient
ssh-keygen

cd ~/.ssh/
nova keypair-add --pub_key id_rsa.pub <key_name>

Example:
nova keypair—-add --pub_key id_rsa.pub net-key

Before booting the instance, check for the ID of the network we created earlier. Note: the <quantum_net_id>
value will come from the output of the "quantum net-list" command:

quantum net-list

Configuring OpenStack Networking (Quantum) and Deploying the First VM 45

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

nova boot —--image precise —--flavor ml.small --key_name <key_name> --nic net-id=<quantum_net_id> <i
Example:

nova boot —--image precise —--flavor ml.small --key_name net-key —--nic net-id=£9035744-72a9-42cf-bd4
Watch the status of the instance:

nova show <instance_name>

Example:

nova show vml

The instance is booted completely when the OS-EXT-STS:vm_state is "active". Make note of the IP address
of the VM. Alternatively, you can watch the complete log of the VM booting by running:

nova console-log —--length=25 vml

Note: If you see the instance log stuck in the following state, restart the quantum-dhcp-agent service on
compute nodes and re-deploy your instance:

Starting network...
udhcpc (v1.20.1) started
Sending discover?

Edit the default Quantum Security Group to allow ingress traffic to Instances. <u</u>

Note: Security Group rules are associated to a specific tenant. We use the admin tenant in our example. The
tenant-id in the command below should match the tenant-id in the previous quantum net-create command.

quantum security-group-rule-create default --direction ingress —--ethertype IPv4 —--protocol icmp -—-
quantum security-group-rule-create default --direction ingress --ethertype IPv4 —--protocol tcp —-¢
This example allows all ICMP and SSH traffic:

quantum security-group-rule-create default --direction ingress —--ethertype IPv4 —--protocol icmp -—-
quantum security-group-rule-create default --direction ingress —--ethertype IPv4 —--protocol tcp —-¢

Note: If you receive the following message "Multiple security_group matches found for name 'default’, use
an ID to be more specific.", then replace the security-group name default with the security-group ID. The ID
can be found by using the quantum security-group-list command.

You should now be able to ping the VM as well as SSH into it from the host that you used to create the key
you associated with the VM during the boot phase.

Configuring OpenStack Networking (Quantum) DHCP Agent High-Availability

First, verify the status of your Quantum Agents. You should see :-) under alive and True under
admin_state_up for all agents. Do not proceed with DHCP Agent fail-over testing if this is not the case:

quantum agent-list
R Rt o R o +———-

Configuring OpenStack Networking (Quantum) DHCP Agent High-Availability 46

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

| id | agent_type | host | alive | adn
R et et e T o o o +———-
| 17538649-c80b-4c82-aedf-67ffca608a5d | DHCP agent | computel03.dmz-pod2.lab | -) | Tru
| 4bc8dac3-ec4a-4369-b1b9-3c0111211d63 | DHCP agent | computel2.dmz-pod2.lab | -) | Tru
| 4f574568-1342-4eea—-9%94ae-96ce7bbaf3fl | Open vSwitch agent | computeOl.dmz-pod2.lab | :-) | Tru
| 53a44eae-025d-40a5-9505-10d33b3£9779 | DHCP agent | computelOl.dmz-pod2.lab | :-) | Tru
| 7394b48c-5b1a-459£f-95c0-1522c443fa88 | Open vSwitch agent | computel2.dmz-pod2.lab | -) | Tru
| a2£55922-b230-4e8£-8535-30ceb59dbbb98 | Open vSwitch agent | computeO03.dmz-pod2.lab | -) | Tru
o o R R +———-
Verify what DHCP Agent is servicing the Quantum public223 network:

quantum dhcp-agent-list-hosting-net public223

- - t—————— +———— +

| id | host | admin_state_up | alive |
- = - - - +

| 4bc8dac3-ec4a-4369-b1b9-3c0111211d63 | computel2.dmz-pod2.lab | True | -)
o R o R +

Have another DHCP Agent service the public223 network. The DHCP Agent on ComputeOl is being added

to the public223 in our example. Note: The DHCP Agent ID can found in the output of the quantum

agent-list command.

quantum dhcp-agent-network—-add 53a44eae-025d-40a5-9505-10d33b3£9779 public223

Added network public223 to DHCP agent

Verify the DHCP Agent on ComputeO1 has been added to the public223 network:

root@controlOl:~# quantum dhcp-agent-list-hosting-net public223
- = - - - +

| id | host | admin_state_up | alive |
o R o R +

| 4bc8dac3-ec4a-4369-b1b9-3c0111211d63 | computel2.dmz-pod2.lab | True | -)

| 53ad44eae-025d-40a5-9505-10d33b3£f9779 | computell.dmz-pod2.lab | True | -)
+- +— +— - +

Verify that you can successfully boot a few Instances:

nova boot —--image precise —-—-flavor ml.small —--key_name <key_name> —--nic net-id=<quantum_net_id> <i

Example:

nova boot —--image precise —--flavor ml.small --key_name net-key —--nic net-id=£9035744-72a9-42cf-bd4
Watch the status of the instance:

nova show <instance_name>

Example:

nova show wvml

The instance is booted completely when the OS-EXT-STS:vm_state is "active". Make note of the IP address
of the VM. Alternatively, you can watch the complete log of the VM booting by running:

nova console-log —--length=25 vml

Configuring OpenStack Networking (Quantum) DHCP Agent High-Availability 47

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide

Note: Ensure that your Instance has successfully received an IP address from the nova console-log
command. Test fail-over by disabling a DHCP Agent on one of the Compute Nodes. Our example disables
the DHCP Agent on Compute02. Note: The DHCP Agent ID can found in the output of the quantum

agent-list command.

quantum agent-update 4bc8dac3-ec4a-4369-b1b9-3c0111211d63 ——-admin_state_

Updated agent: 4bc8dac3-ec4a-4369-b1b9-3c0111211d63

up=false

Verify the agent is disabled. You should see admin_state_up False associated to the DHCP Agent that you

disabled:

root@controlOl:~# quantum agent-list
o o o
| id | agent_type | host
- - -
| 17538649-c80b-4c82-aedf-67ffca608a5d | DHCP agent | compute03.
| 4bc8dac3-ec4a-4369-b1b9-3c0111211d63 | DHCP agent | computel2.
| 4f574568-1342-4eca-9%94ae-96ce7bb6af3fl | Open vSwitch agent | computeOl.
| 53a44eae-025d-40a5-9505-10d33b3£9779 | DHCP agent | computeOl.
| 7394b48c-5b1a-459f-95c0-1522c443fa88 | Open vSwitch agent | computeO2.
| a2f£55922-b230-4e8£-8535-30ce59dbbb98 | Open vSwitch agent | computeO3.
- - -
Verify that you can successfully boot a few Instances:

nova boot --image precise --flavor ml.small --key_name <key_name> —--nic

Example:

——— e + _______ +____

| alive | adn
e I, PR
dmz-pod2.lab | -) | Tru
dmz-pod2.lab | -) | Fal
dmz-pod2.lab | -) | Tru
dmz-pod2.lab | -) | Tru
dmz-pod2.lab | -) | Tru
dmz-pod2.lab | :-) | Tru
o __ I I

net-id=<quantum_net_id> <i

nova boot --image precise —--flavor ml.small --key_name net-key —--nic net-1d=£9035744-72a9-42cf-bd/

Watch the status of the instance:

nova show <instance_name>

Example:

nova show wvml

The instance is booted completely when the OS-EXT-STS:vm_state is "active". Make note of the IP address

of the VM. Alternatively, you can watch the complete log of the VM booting by running:

nova console-log —--length=25 vml

Note: Ensure that your Instance has successfully received an IP address from the nova console-log

command.

Test fail-over by disabling a DHCP Agent on one of the Compute Nodes. Repeat the same process with other

DHCP agents.

When fail-over testing is complete, enable all DHCP Agents and repeat the steps above for fail-back testing.

Support

Email: openstack-support@cisco.com

Support

48

COE_Grizzly_Release:_High-Availability _Manual_Installation_Guide
Credits

This work has been based on:

® OpenStack Grizzly Installation Guide for Ubuntu 12.04 (LTS) Documentation [1]

Authors

Daneyon Hansen

Shannon McFarland

Credits

49

http://docs.openstack.org/grizzly/openstack-compute/install/apt/content/

	COE_Grizzly_Release:_High-Availability_Manual_Installation_Guide

