ONS 15454 Reference Manual R8.5.x -- SONET Topologies and Upgrades

From DocWiki

Revision as of 11:27, 17 December 2008 by Svedanay (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Note: The terms "Unidirectional Path Switched Ring" and "UPSR" may appear in Cisco literature. These terms do not refer to using Cisco ONS 15xxx products in a unidirectional path switched ring configuration. Rather, these terms, as well as "Path Protected Mesh Network" and "PPMN," refer generally to Cisco's path protection feature, which may be used in any topological network configuration. Cisco does not recommend using its path protection feature in any particular topological network configuration.

This chapter explains Cisco ONS 15454 SONET topologies and upgrades. To provision topologies, refer to the Cisco ONS 15454 Procedure Guide.

Chapter topics include:

Contents

SONET Rings and TCC2/TCC2P Cards

Table 12-1 shows the SONET rings that can be created on each ONS 15454 node using redundant TCC2/TCC2P cards.

Table 12-1: ONS 15454 Rings with Redundant TCC2/TCC2P Cards
Ring Type Maximum Rings per Node

BLSRs

5

2-Fiber BLSR

5

4-Fiber BLSR

1

Path protection with SDCC

341,2

Path protection with LDCC

143,4

Path protection with LDCC and SDCC

265

1. Total SDCC usage must be equal to or less than 84 SDCCs.

2. See the Path Protection section.

3. Total LDCC usage must be equal to or less than 28 LDCCs.

4. See the Path Protection section.

5. Total LDCC and SDCC usage must be equal to or less than 84. When LDCC is provisioned, an SDCC termination is allowed on the same port, but is not recommended. Using SDCC and LDCC on the same port is only needed during a software upgrade if the other end of the link does not support LDCC. You can provision SDCCs and LDCCs on different ports in the same node.

Bidirectional Line Switched Rings

The ONS 15454 can support five concurrent bidirectional line switch rings (BLSRs) in one of the following configurations:

  • Five two-fiber BLSRs
  • Four two-fiber and one four-fiber BLSR

Each BLSR can have up to 32 ONS 15454s. Because the working and protect bandwidths must be equal, you can create only OC-12 (two-fiber only), OC-48, or OC-192 BLSRs.

Note: For best performance, BLSRs should have one LAN connection for every ten nodes in the BLSR.

Two-Fiber BLSRs

In two-fiber BLSRs, each fiber is divided into working and protect bandwidths. For example, in an OC-48 BLSR (Figure 12-1), STSs 1 to 24 carry the working traffic, and STSs 25 to 48 are reserved for protection. Working traffic (STSs 1 to 24) travels in one direction on one fiber and in the opposite direction on the second fiber. The Cisco Transport Controller (CTC) circuit routing routines calculate the shortest path for circuits based on many factors, including user requirements, traffic patterns, and distance. For example, in Figure 12-1, circuits going from Node 0 to Node 1 typically travel on Fiber 1, unless that fiber is full, in which case circuits are routed on Fiber 2 through Node 3 and Node 2. Traffic from Node 0 to Node 2 (or Node 1 to Node 3) can be routed on either fiber, depending on circuit provisioning requirements and traffic loads.

Figure 12-1: Four-Node, Two-Fiber BLSR

61938.jpg

The SONET K1, K2, and K3 bytes carry the information that governs BLSR protection switches. Each BLSR node monitors the K bytes to determine when to switch the SONET signal to an alternate physical path. The K bytes communicate failure conditions and actions taken between nodes in the ring.

If a break occurs on one fiber, working traffic targeted for a node beyond the break switches to the protect bandwidth on the second fiber. The traffic travels in a reverse direction on the protect bandwidth until it reaches its destination node. At that point, traffic is switched back to the working bandwidth.

Figure 12-2 shows a traffic pattern sample on a four-node, two-fiber BLSR.

Figure 12-2: Four-Node, Two-Fiber BLSR Traffic Pattern Sample

61956.jpg

Figure 12-3 shows how traffic is rerouted following a line break between Node 0 and Node 3.

  • All circuits originating on Node 0 that carried traffic to Node 2 on Fiber 2 are switched to the protect bandwidth of Fiber 1. For example, a circuit carrying traffic on STS-1 on Fiber 2 is switched to STS-25 on Fiber 1. A circuit carried on STS-2 on Fiber 2 is switched to STS-26 on Fiber 1. Fiber 1 carries the circuit to Node 3 (the original routing destination). Node 3 switches the circuit back to STS-1 on Fiber 2 where it is routed to Node 2 on STS-1.
  • Circuits originating on Node 2 that normally carried traffic to Node 0 on Fiber 1 are switched to the protect bandwidth of Fiber 2 at Node 3. For example, a circuit carrying traffic on STS-2 on Fiber 1 is switched to STS-26 on Fiber 2. Fiber 2 carries the circuit to Node 0 where the circuit is switched back to STS-2 on Fiber 1 and then dropped to its destination.
Figure 12-3: Four-Node, Two-Fiber BLSR Traffic Pattern Following Line Break

61957.jpg

Four-Fiber BLSRs

Four-fiber BLSRs double the bandwidth of two-fiber BLSRs. Because they allow span switching as well as ring switching, four-fiber BLSRs increase the reliability and flexibility of traffic protection. Two fibers are allocated for working traffic and two fibers for protection, as shown in Figure 12-4. To implement a four-fiber BLSR, you must install four OC-48, OC-48 AS, or OC-192 cards at each BLSR node.

Figure 12-4: Four-Node, Four-Fiber BLSR

61932.jpg

Four-fiber BLSRs provide span and ring switching:

  • Span switching (Figure 12-5) occurs when a working span fails. Traffic switches to the protect fibers between the nodes (Node 0 and Node 1 in the example in Figure 12-5) and then returns to the working fibers. Multiple span switches can occur at the same time.
Figure 12-5: Four-Fiber BLSR Span Switch

61959.jpg

  • Ring switching (Figure 12-6) occurs when a span switch cannot recover traffic, such as when both the working and protect fibers fail on the same span. In a ring switch, traffic is routed to the protect fibers throughout the full ring.
Figure 12-6: Four-Fiber BLSR Ring Switch

61960.jpg

BLSR Bandwidth

BLSR nodes can terminate traffic coming from either side of the ring. Therefore, BLSRs are suited for distributed node-to-node traffic applications such as interoffice networks and access networks.

BLSRs allow bandwidth to be reused around the ring and can carry more traffic than a network with traffic flowing through one central hub. BLSRs can also carry more traffic than a path protection configuration operating at the same OC-N rate. Table 12-2 shows the bidirectional bandwidth capacities of two-fiber BLSRs. The capacity is the OC-N rate divided by two, multiplied by the number of nodes in the ring minus the number of pass-through STS-1 circuits.

Table 12-2: Two-Fiber BLSR Capacity
OC Rate Working Bandwidth Protection Bandwidth Ring Capacity

OC-12

STS1-6

STS 7-12

6 x N1- PT2

OC-48

STS 1-24

STS 25-48

24 x N - PT

OC-192

STS 1-96

STS 97-192

96 x N - PT

1. N equals the number of ONS 15454 nodes configured as BLSR nodes.

2. PT equals the number of STS-1 circuits passed through ONS 15454 nodes in the ring (capacity can vary depending on the traffic pattern).

Table 12-3 shows the bidirectional bandwidth capacities of four-fiber BLSRs.

Table 12-3: Four-Fiber BLSR Capacity
OC Rate Working Bandwidth Protection Bandwidth Ring Capacity

OC-48

STS 1-48 (Fiber 1)

STS 1-48 (Fiber 2)

48 x N1 - PT2

OC-192

STS 1-192 (Fiber 1)

STS 1-192 (Fiber 2)

192 x N - PT

1. N equals the number of ONS 15454 nodes configured as BLSR nodes.

2. PT equals the number of STS-1 circuits passed through ONS 15454 nodes in the ring (capacity can vary depending on the traffic pattern).


Figure 12-7 shows an example of BLSR bandwidth reuse. The same STS carries three different traffic sets simultaneously on different spans around the ring: one set from Node 3 to Node 1, another set from Node 1 to Node 2, and another set from Node 2 to Node 3.

Figure 12-7: BLSR Bandwidth Reuse

32131.jpg

BLSR Application Example

Figure 12-8 shows a two-fiber BLSR implementation example with five nodes. A regional long-distance network connects to other carriers at Node 0. Traffic is delivered to the service provider's major hubs.

  • Carrier 1 delivers six DS-3s over two OC-3 spans to Node 0. Carrier 2 provides twelve DS-3s directly. Node 0 receives the signals and delivers them around the ring to the appropriate node.
  • The ring also brings 14 DS-1s back from each remote site to Node 0. Intermediate nodes serve these shorter regional connections.
  • The ONS 15454 OC-3 card supports a total of four OC-3 ports so that two additional OC-3 spans can be added at little cost.
Figure 12-8: Five-Node Two-Fiber BLSR

32138.jpg

Figure 12-9 shows the shelf assembly layout for Node 0, which has one free slot.

Figure 12-9: Shelf Assembly Layout for Node 0 in Figure 12-8

134608.jpg

Figure 12-10 shows the shelf assembly layout for the remaining sites in the ring. In this BLSR configuration, an additional eight DS-3s at Node IDs 1 and 3 can be activated. An additional four DS-3s can be added at Node 4, and ten DS-3s can be added at Node 2. Each site has free slots for future traffic needs.

Figure 12-10: Shelf Assembly Layout for Nodes 1 to 4 in Figure 12-8

134605.jpg

BLSR Fiber Connections

Plan your fiber connections and use the same plan for all BLSR nodes. For example, make the east port the farthest slot to the right and the west port the farthest slot to the left. Plug fiber connected to an east port at one node into the west port on an adjacent node. Figure 12-11 shows fiber connections for a two-fiber BLSR with trunk cards in Slot 5 (west) and Slot 12 (east). Refer to the Cisco ONS 15454 Procedure Guide for fiber connection procedures. Note: Always plug the transmit (Tx) connector of an OC-N card at one node into the receive (Rx) connector of an OC-N card at the adjacent node. Cards display an SF LED when Tx and Rx connections are mismatched.

Figure 12-11: Connecting Fiber to a Four-Node, Two-Fiber BLSR

55297.jpg

For four-fiber BLSRs, use the same east-west connection pattern for the working and protect fibers. Do not mix working and protect card connections. The BLSR does not function if working and protect cards are interconnected. Figure 12-12 shows fiber connections for a four-fiber BLSR. Slot 5 (west) and Slot 12 (east) carry the working traffic. Slot 6 (west) and Slot 13 (east) carry the protect traffic.

Figure 12-12: Connecting Fiber to a Four-Node, Four-Fiber BLSR

61958.jpg

Path Protection

Path Protection Configurations(PPC) provide duplicate fiber paths around the ring. Working traffic flows in one direction and protection traffic flows in the opposite direction. If a problem occurs with the working traffic path, the receiving node switches to the path coming from the opposite direction.

CTC automates ring configuration. path protection traffic is defined within the ONS 15454 on a circuit-by-circuit basis. If a path-protected circuit is not defined within a 1+1 or BLSR line protection scheme and path protection is available and specified, CTC uses path protection as the default.

A path protection circuit requires two DCC-provisioned optical spans per node. Path protection circuits can be created across these spans until their bandwidth is consumed.

Note: If a path protection circuit is created manually by TL1, data communications channels (DCCs) are not needed; therefore, path protection circuits are limited by the cross-connection bandwidth or the span bandwidth, but not by the number of DCCs.

The span bandwidth consumed by a path protection circuit is two times the circuit bandwidth, because the circuit is duplicated. The cross-connection bandwidth consumed by a path protection circuit is three times the circuit bandwidth at the source and destination nodes only. The cross-connection bandwidth consumed by an intermediate node has a factor of one.

The path protection circuit limit is the sum of the optical bandwidth containing 84 section data communication channels (SDCCs) or 28 line data communication channels (LDCCs), divided by two if you are using redundant TCC2/TCC2P cards. The spans can be of any bandwidth from OC-3 to OC-192. The circuits can be of any size from VT1.5 to 192c.

Figure 12-13 shows a basic four-node path protection configuration. If Node ID 0 sends a signal to Node ID 2, the working signal travels on the working traffic path through Node ID 1. The same signal is also sent on the protect traffic path through Node ID 3.

Figure 12-13: Basic Four-Node Path Protection

32148.jpg

If a fiber break occurs (Figure 12-14), Node ID 2 switches its active receiver to the protect signal coming through Node ID 3.

Because each traffic path is transported around the entire ring, path protection configurations are best suited for networks where traffic concentrates at one or two locations and is not widely distributed. Path protection capacity is equal to its bit rate. Services can originate and terminate on the same path protection, or they can be passed to an adjacent access or interoffice ring for transport to the service-terminating location.

Figure 12-14: Path Protection with a Fiber Break

32639.jpg

Figure 12-15 shows a common path protection application. OC-3 optics provide remote switch connectivity to a host Telcordia TR-303 switch. In the example, each remote switch requires eight DS-1s to return to the host switch. Figure 12-16 and Figure 12-17 show the shelf layout for each site.

Figure 12-15: Four-Port, OC-3 Path Protection

32149.jpg

Node ID 0 has four DS1-14 cards to provide 56 active DS-1 ports. The other sites only require two DS1-14 cards to handle the eight DS-1s to and from the remote switch. You can use the other half of each ONS 15454 shelf assembly to provide support for a second or third ring to other existing or planned remote sites.

In the OC-3 path protection sample, Node ID 0 contains four DS1-14 cards and two OC3 IR 4 1310 cards. Six free slots can be provisioned with cards or left empty. Figure 12-16 shows the shelf setup for these card.

Figure 12-16: Layout of Node ID 0 in the OC-3 Path Protection Example in Figure 12-15

134606.jpg

In the Figure 12-15 example, Nodes IDs 1 to 3 each contain two DS1-14 cards and two OC3 IR 4 1310 cards. Eight free slots exist. They can be provisioned with other cards or left empty. Figure 12-17 shows the shelf assembly setup for this configuration example.

Figure 12-17: Layout of Node IDs 1 to 3 in the OC-3 Path Protection Example in Figure 12-15

134607.jpg

Dual-Ring Interconnect

Dual-ring interconnect (DRI) topologies provide an extra level of path protection for circuits on interconnected rings. DRI allows users to interconnect BLSRs, path protection configurations, or a path protection with a BLSR, with additional protection provided at the transition nodes. In a DRI topology, ring interconnections occur at two or four nodes.

The drop-and-continue DRI method is used for all ONS 15454 DRIs. In drop-and-continue DRI, a primary node drops the traffic to the connected ring and routes traffic to a secondary node within the same ring. The secondary node also routes the traffic to the connected ring; that is, the traffic is dropped at two different interconnection nodes to eliminate single points of failure. To route circuits on DRI, you must choose the Dual Ring Interconnect option during circuit provisioning. Dual transmit is not supported.

Two DRI topologies can be implemented on the ONS 15454:

  • A traditional DRI requires two pairs of nodes to interconnect two networks. Each pair of user-defined primary and secondary nodes drops traffic over a pair of interconnection links to the other network.
  • An integrated DRI requires one pair of nodes to interconnect two networks. The two interconnected nodes replace the interconnection ring.

For DRI topologies, a hold-off timer sets the amount of time before a selector switch occurs. It reduces the likelihood of multiple switches, such as:

  • Both a service selector and a path selector
  • Both a line switch and a path switch of a service selector

For example, if a path protection DRI service selector switch does not restore traffic, then the path selector switches after the hold-off time. The path protection DRI hold-off timer default is 100 ms. You can change this setting in the Path Protection Selectors tab of the Edit Circuits window. For BLSR DRI, if line switching does not restore traffic, then the service selector switches. The hold-off time delays the recovery provided by the service selector. The BLSR DRI default hold-off time is 100 ms, but it can be changed.

BLSR DRI

Unlike BLSR automatic protection switching (APS) protocol, BLSR-DRI is a path-level protection protocol at the circuit level. Drop-and-continue BLSR-DRI requires a service selector in the primary node for each circuit routing to the other ring. Service selectors monitor signal conditions from dual feed sources and select the one that has the best signal quality. Same-side routing drops the traffic at primary nodes set up on the same side of the connected rings, and opposite-side routing drops the traffic at primary nodes set up on the opposite sides of the connected rings. For BLSR-DRI, primary and secondary nodes cannot be the circuit source or destination.

Note: A DRI circuit cannot be created if an intermediate node exists on the interconnecting link. However, an intermediate node can be added on the interconnecting link after the DRI circuit is created.

DRI protection circuits act as protection channel access (PCA) circuits. In CTC, you set up DRI protection circuits by selecting the PCA option when setting up primary and secondary nodes during DRI circuit creation.

Figure 12-18 shows ONS 15454 nodes in a traditional BLSR-DRI topology with same-side routing. In Ring 1, Nodes 3 and 4 are the interconnect nodes, and in Ring 2, Nodes 8 and 9 are the interconnect nodes. Duplicate signals are sent between Node 4 (Ring 1) and Node 9 (Ring 2), and between Node 3 (Ring 1) and Node 8 (Ring 2). The primary nodes (Nodes 4 and 9) are on the same side, and the secondary nodes (Nodes 3 and 8) provide an alternative route. In Ring 1, traffic at Node 4 is dropped (to Node 9) and continued (to Node 3). Similarly, at Node 9, traffic is dropped (to Node 4) and continued (to Node 8).

Figure 12-18: ONS 15454 Traditional BLSR Dual-Ring Interconnect (Same-Side Routing)

115235.jpg

Figure 12-19 shows ONS 15454 nodes in a traditional BLSR-DRI topology with opposite-side routing. In Ring 1, Nodes 3 and 4 are the interconnect nodes, and in Ring 2, Nodes 8 and 9 are the interconnect nodes. Duplicate signals are sent from Node 4 (Ring 1) to Node 8 (Ring 2), and between Node 3 (Ring 1) and Node 9 (Ring 2). In Ring 1, traffic at Node 4 is dropped (to Node 9) and continued (to Node 3). Similarly, at Node 8, traffic is dropped (to Node 3) and continued (to Node 8).

Figure 12-19: ONS 15454 Traditional BLSR Dual-Ring Interconnect (Opposite-Side Routing)

115234.jpg

Figure 12-20 shows ONS 15454s in an integrated BLSR-DRI topology. The same drop-and-continue traffic routing occurs at two nodes, rather than four. This is achieved by installing an additional OC-N trunk at the two interconnect nodes. Nodes 3 and 8 are the interconnect nodes.

Figure 12-20: ONS 15454 Integrated BLSR Dual-Ring Interconnect

115236.jpg

Figure 12-21 shows an example of an integrated BLSR DRI on the Edit Circuits window.

Figure 12-21: Integrated BLSR DRI on the Edit Circuits Window

134877.jpg

Path Protection DRI

Figure 12-22 shows ONS 15454 nodes in a traditional drop-and-continue path protection DRI topology. In Ring 1, Nodes 4 and 5 are the interconnect nodes, and in Ring 2, Nodes 6 and 7 are the interconnect nodes. Duplicate signals are sent between Node 4 (Ring 1) and Node 6 (Ring 2), and between Node 5 (Ring 1) and Node 7 (Ring 2). In Ring 1, traffic at Node 4 is dropped (to Node 6) and continued (to Node 5). Similarly, at Node 5, traffic is dropped (to Node 7) and continued (to Node 4).

Figure 12-22: ONS 15454 Traditional Path Protection Dual-Ring Interconnect

85761.jpg

Figure 12-23 shows ONS 15454 nodes in an integrated DRI topology. The same drop-and-continue traffic routing occurs at two nodes, rather than four. This is achieved by installing an additional OC-N trunk at the two interconnect nodes.

Figure 12-23: ONS 15454 Integrated Path Protection Dual-Ring Interconnect

85762.jpg

Path Protection/BLSR DRI Handoff Configurations

Path protection configurations and BLSRs can also be interconnected. In BLSR/path protectionDRI handoff configurations, primary and secondary nodes can be the circuit source or destination, which is useful when non-DCC optical interconnecting links are present. Figure 12-24 shows an example of a path protection to BLSR traditional DRI handoff.

Figure 12-24: ONS 15454 Path Protection to BLSR Traditional DRI Handoff

115273.jpg

Figure 12-25 shows an example of a path protection to BLSR integrated DRI handoff.

Figure 12-25: ONS 15454 Path Protection to BLSR Integrated DRI Handoff

115272.jpg

Figure 12-26 shows a path protection to BLSR integrated DRI handoff on the Edit Circuits window.

Figure 12-26: Path Protection to BLSR Integrated DRI Handoff on the Detailed Circuit Map

134878ag.jpg

Subtending Rings

The ONS 15454 supports up to 84 SONET SDCCs or 28 SONET LDCCs with TCC2/TCC2P cards. See Table 12-1 for ring, SDCC, and LDCC information.

Subtending rings reduce the number of nodes and cards required, and reduce external shelf-to-shelf cabling. Figure 12-27 shows an ONS 15454 with multiple subtending rings.

Figure 12-27: ONS 15454 with Multiple Subtending Rings

55302.jpg

Figure 12-28 shows a path protection configuration subtending from a BLSR. In this example, Node 3 is the only node serving both the BLSR and the path protection configuration. OC-N cards in Slots 5 and 12 serve the BLSR, and OC-N cards in Slots 6 and 13 serve the path protection configuration.

Figure 12-28: Path Protection Subtending from a BLSR

55303.jpg

The ONS 15454 can support two BLSRs on the same node. This allows you to deploy an ONS 15454 in applications requiring SONET Digital Cross-connect Systems (DCSs) or multiple SONET add/drop multiplexers (ADMs).

Figure 12-29 shows two BLSRs shared by one ONS 15454. Ring 1 runs on Nodes 1, 2, 3, and 4. Ring 2 runs on Nodes 4, 5, 6, and 7. Two BLSR rings, Ring 1 and Ring 2, are provisioned on Node 4. Ring 1 uses cards in Slots 5 and 12, and Ring 2 uses cards in Slots 6 and 13.

Note: Nodes in different BLSRs can have the same, or different node IDs.

Figure 12-29: BLSR Subtending from a BLSR

55298.jpg

After subtending two BLSRs, you can route circuits from nodes in one ring to nodes in the second ring. For example, in Figure 12-29 you can route a circuit from Node 1 to Node 7. The circuit would normally travel from Node 1 to Node 4 to Node 7. If fiber breaks occur, for example between Nodes 1 and 4 and Nodes 4 and 7, traffic is rerouted around each ring: in this example, Nodes 2 and 3 in Ring 1 and Nodes 5 and 6 in Ring 2.

Linear ADM Configurations

You can configure ONS 15454s as a line of add/drop multiplexers (ADMs) by configuring one set of OC-N cards as the working path and a second set as the protect path. Unlike rings, point-to-point ADMs (two-node configurations) and linear ADMs (three-node configurations) require that the OC-N cards at each node be in 1+1 protection to ensure that a break to the working line is automatically routed to the protect line.

Figure 12-30 shows three ONS 15454 nodes in a linear ADM configuration. Working traffic flows from Slot 5/Node 1 to Slot 5/Node 2, and from Slot 12/Node 2 to Slot 12/Node 3. You create the protect path by placing Slot 6 in 1+1 protection with Slot 5 at Nodes 1 and 2, and Slot 12 in 1+1 protection with Slot 13 at Nodes 2 and 3.

Figure 12-30: Linear (Point-to-Point) ADM Configuration

34284.jpg

Path-Protected Mesh Networks

In addition to single BLSRs, path protection configurations, and ADMs, you can extend ONS 15454 traffic protection by creating path-protected mesh networks (PPMNs). PPMNs include multiple ONS 15454 SONET topologies and extend the protection provided by a single path protection to the meshed architecture of several interconnecting rings. In a PPMN, circuits travel diverse paths through a network of single or multiple meshed rings. When you create circuits, you can have CTC automatically route circuits across the PPMN, or you can manually route them. You can also choose levels of circuit protection. For example, if you choose full protection, CTC creates an alternate route for the circuit in addition to the main route. The second route follows a unique path through the network between the source and destination and sets up a second set of cross-connections.

For example, in Figure 12-31 a circuit is created from Node 3 to Node 9. CTC determines that the shortest route between the two nodes passes through Node 8 and Node 7, shown by the dotted line, and automatically creates cross-connections at Nodes 3, 8, 7, and 9 to provide the primary circuit path.

If full protection is selected, CTC creates a second unique route between Nodes 3 and 9 which, in this example, passes through Nodes 2, 1, and 11. Cross-connections are automatically created at Nodes 3, 2, 1, 11, and 9, shown by the dashed line. If a failure occurs on the primary path, traffic switches to the second circuit path. In this example, Node 9 switches from the traffic coming in from Node 7 to the traffic coming in from Node 11 and service resumes. The switch occurs within 50 ms.

Figure 12-31: Path-Protected Mesh Network

32136.jpg

PPMN also allows spans with different SONET speeds to be mixed together in "virtual rings." Figure 12-32 shows Nodes 1, 2, 3, and 4 in a standard OC-48 ring. Nodes 5, 6, 7, and 8 link to the backbone ring through OC-12 fiber. The "virtual ring" formed by Nodes 5, 6, 7, and 8 uses both OC-48 and OC-12 cards.

Figure 12-32: PPMN Virtual Ring

32137.jpg

Four-Shelf Node Configurations

You can link multiple ONS 15454s using their OC-N cards (that is, create a fiber-optic bus) to accommodate more access traffic than a single ONS 15454 can support. Refer to the Cisco ONS 15454 Procedure Guide. For example, to drop more than 112 DS-1s or 96 DS-3s (the maximum that can be aggregated in a single node), you can link the nodes but not merge multiple nodes into a single ONS 15454. You can link nodes with OC-12 or OC-48 fiber spans as you would link any other two network nodes. The nodes can be grouped in one facility to aggregate more local traffic.

Figure 12-33 shows a four-shelf node setup. Each shelf assembly is recognized as a separate node in the ONS 15454 software interface and traffic is mapped using CTC cross-connect options. In Figure 12-33, each node uses redundant fiber-optic cards. Node 1 uses redundant OC-N transport and OC-N bus (connecting) cards for a total of four cards, with eight free slots remaining. Nodes 2 and 3 each use two redundant OC-N bus cards for a total of four cards, with eight free slots remaining. Node 4 uses redundant OC-12 bus cards for a total of two cards, with ten free slots remaining. The four-shelf node example presented here is one of many ways to set up a multiple-node configuration.

Figure 12-33: Four-Shelf Node Configuration

32097.jpg

STS around the Ring

You can provision STS circuits with a source endpoint and a destination endpoint on the same node, and route the traffic around a ring. The circuit source and destination can be on the same card, but you must use two different ports on the card, see Figure 12-34.

Manual routing is required for STS around the ring circuits amd "Route Automatically" must be unchecked in the CTC circuit provisioning pane. STS around ring circuits created using Transaction Language 1 (TL1) are discovered by CTC and the status "COMPLETE" is displayed. STS around the ring supports circuit sizes; STS-1, 3c, 6c, 9c, 12c, 24c, 36c, 48c, and 192cs. Both unidirectional and bidirectional circuits are supported, and STS around the ring circuits are CCAT only, VCAT is not supported. STS around ring circuits are linear circuits.

Figure 12-34: STS Around the Ring

240644.jpg

OC-N Speed Upgrades

A span is the optical fiber connection between two ONS 15454 nodes. In a span (optical speed) upgrade, the transmission rate of a span is upgraded from a lower to a higher OC-N signal but all other span configuration attributes remain unchanged. With multiple nodes, a span upgrade is a coordinated series of upgrades on all nodes in the ring or protection group. You can perform in-service span upgrades for the following ONS 15454 cards:

  • Single-port OC-12 to OC-48
  • Single-port OC-12 to OC-192
  • Single-port OC-12 to four-port OC-12
  • Single-port OC-12 to MRC-12
  • OC-48 to OC-192

You can also perform in-service card upgrades for the following ONS 15454 cards:

  • Four-port OC-3 to eight-port OC-3
  • Single-port OC-12 to four-port OC-12
  • OC-48 to MRC-12
  • OC-192 to OC192-XFP

Table 12-4 lists permitted upgrades for Slots 5, 6, 12, and 13 (high-speed slots).

Table 12-4: Slot 5, 6, 12, and 13 Upgrade Options
Cards Four-port OC-3 Eight-port OC-3 One-port OC-12 Four-port OC-12 OC-48 OC-192 MRC-12

Four-port OC-3

-

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Eight-port OC-31

Not supported

-

Not supported

Not supported

Not supported

Not supported

Not supported

One-port OC-12

Not supported

Not supported

-

Not supported

Supported

Supported

Supported

Four-port OC-122

Not supported

Not supported

Not supported

-

Not supported

Not supported

Not supported

OC-48

Not supported

Not supported

Supported

Not supported

-

Supported

Supported

OC-192

Not supported

Not supported

Supported

Not supported

Supported

-

Not supported

MRC-12

Not supported

Not supported

Supported

Not supported

Supported

Not supported

-

1. The eight-port OC-3 is not supported in Slots 5, 6, 12, and 13.

2. The four-port OC-12 is not supported in Slots 5, 6, 12, and 13.


Table 12-5 lists permitted upgrades for Slots 1 through 4 and 14 through 17 (low-speed slots).

Table 12-5: Upgrade Options for Slots 1 through 4 and 14 through 17
Cards Four-port OC-3 Eight-port OC-3 One-port OC-12 Four-port OC-12 OC-48 OC-192 MRC-12

Four-port OC-3

-

Supported

Not supported

Not supported

Not supported

-

Not supported

Eight-port OC-3

Supported

-

Not supported

Not supported

Not supported

-

Not supported

One-port OC-12

Not supported

Not supported

-

Supported

Supported

-

Supported

Four-port OC-12

Not supported

Not supported

Supported

-

Not supported

-

Not supported

OC-48

Not supported

Not supported

Supported

Not supported

-

-

Supported

OC-1921

-

-

-

-

-

-

Not supported

MRC-12

Not supported

Not supported

Supported

Not supported

Supported

Not supported

-

1. The OC-192 is not supported on Slots 1 through 4 and 14 through 17.


Note: Replacing cards that are the same speed are not considered span upgrades. For example replacing a four-port OC-3 with an eight-port OC-3 card or replacing a single-port OC-12 with a four-port OC-12 card.

To perform a span upgrade, the higher-rate OC-N card must replace the lower-rate card in the same slot. If the upgrade is conducted on spans residing in a BLSR, all spans in the ring must be upgraded. The protection configuration of the original lower-rate OC-N card (two-fiber BLSR, four-fiber BLSR, path protection, and 1+1) is retained for the higher-rate OC-N card.

To perform a span upgrade on either the OC192-XFP or MRC-12 card with an SFP/XFP (known as pluggable port modules, PPMs, in CTC), the higher-rate PPM must replace the lower-rate PPM in the same slot. If you are using a multi-rate PPM, you do not need to physically replace the PPM but can provision the PPM for a different line rate. All spans in the network must be upgraded. The 1+1 protection configuration of the original lower-rate PPM is retained for the higher-rate PPM.

When performing span upgrades on a large number of nodes, we recommend that you upgrade all spans in a ring consecutively and in the same maintenance window. Until all spans are upgraded, mismatched card types or PPM types are present.

We recommend using the Span Upgrade Wizard to perform span upgrades. Although you can also use the manual span upgrade procedures, the manual procedures are mainly provided as error recovery for the wizard. The Span Upgrade Wizard and the Manual Span Upgrade procedures require at least two technicians (one at each end of the span) who can communicate with each other during the upgrade. Upgrading a span is non-service affecting and causes no more than three switches, each of which is less than 50 ms in duration.

Note: Span upgrades do not upgrade SONET topologies (for example, a 1+1 group to a two-fiber BLSR). Refer to the Cisco ONS 15454 Procedure Guide for topology upgrade procedures.

Span Upgrade Wizard

The Span Upgrade Wizard automates all steps in the manual span upgrade procedure (BLSR, path protection, and 1+1). The wizard can upgrade both lines on one side of a four-fiber BLSR or both lines of a 1+1 group; the wizard upgrades path protection configurations and two-fiber BLSRs one line at a time. The Span Upgrade Wizard requires that all working spans have DCC enabled.

The Span Upgrade Wizard provides no way to back out of an upgrade. In the case of an error, you must exit the wizard and initiate the manual procedure to either continue with the upgrade or back out of it. To continue with the manual procedure, examine the standing conditions and alarms to identify the stage in which the wizard failure occurred.

Manual Span Upgrades

Manual span upgrades are mainly provided as error recovery for the Span Upgrade Wizard, but they can be used to perform span upgrades. Downgrading can be performed to back out of a span upgrade. The procedure for downgrading is the same as upgrading except that you choose a lower-rate card type. You cannot downgrade if circuits exist on the STSs that will be removed (the higher STSs).

Procedures for manual span upgrades can be found in the "Upgrade Cards and Spans" chapter in the Cisco ONS 15454 Procedure Guide. Five manual span upgrade options are available:

  • Upgrade on a two-fiber BLSR
  • Upgrade on a four-fiber BLSR
  • Upgrade on a path protection configuration
  • Upgrade on a 1+1 protection group
  • Upgrade on an unprotected span

In-Service Topology Upgrades

Topology upgrades can be performed in-service to convert a live network to a different topology. An in-service topology upgrade is potentially service-affecting, and generally allows a traffic hit of 50 ms or less. Traffic might not be protected during the upgrade. The following in-service topology upgrades are supported:

  • Unprotected point-to-point or linear ADM to path protection
  • Point-to-point or linear ADM to two-fiber BLSR
  • Path protection to two-fiber BLSR
  • Two-fiber to four-fiber BLSR
  • Node addition or removal from an existing topology

You can perform in-service topology upgrades irrespective of the service state of the involved cross-connects or circuits; however, a circuit must have a DISCOVERED status.

Circuit types supported for in-service topology upgrades are:

  • STS, VT, and VT tunnels
  • Virtual concatenated circuits (VCAT)
  • Unidirectional and bidirectional
  • Automatically routed and manually routed
  • CTC-created and TL1-created
  • Ethernet (unstitched)
  • Multiple source and destination (both sources should be on one node and both drops on one node)

You cannot upgrade stitched Ethernet circuits during topology conversions. For in-service topology upgrade procedures, refer to the "Convert Network Configurations" chapter in the Cisco ONS 15454 Procedure Guide. For procedures to add or remove a node, refer to the "Add and Remove Nodes" chapter of the Cisco ONS 15454 Procedure Guide.

Note: A database restore on all nodes in a topology returns converted circuits to their original topology.

Note: Open-ended path protection and DRI configurations do not support in-service topology upgrades.

Unprotected Point-to-Point or Linear ADM to Path Protection

CTC provides a topology conversion wizard for converting an unprotected point-to-point or linear ADM topology to path protection. This conversion occurs at the circuit level. CTC calculates the additional path protection circuit route automatically or you can do it manually. When routing the path protection circuit, you can provision the USPR as go-and-return or unidirectional.

When performing an in-service topology upgrade on a configuration with VCAT circuits, CTC allows you to select member circuits to upgrade individually. When upgrading VT tunnels, CTC does not convert the VT tunnel to path protection, but instead creates a secondary tunnel for the alternate path. The result is two unprotected VT tunnels using alternate paths.

To convert from point-to-point or linear ADM to a path protection, the topology requires an additional circuit route to complete the ring. When the route is established, CTC creates circuit connections on any intermediate nodes and modifies existing circuit connections on the original circuit path. The number and position of network spans in the topology remains unchanged during and after the conversion.

Figure 12-35 shows an unprotected point-to-point ADM configuration converted to a path protection. An additional circuit routes through Node 3 to complete the path protection.

Figure 12-35: Unprotected Point-to-Point ADM to Path Protection Conversion

115716.jpg

Point-to-Point or Linear ADM to Two-Fiber BLSR

A 1+1 point-to-point or linear ADM to a two-fiber BLSR conversion is manual. You must remove the protect fibers from all nodes in the linear ADM and route them from the end node to the protect port on the other end node. In addition, you must delete the circuit paths that are located in the bandwidth that will become the protection portion of the two-fiber BLSR (for example, circuits in STS 25 or higher on an OC-48 BLSR) and recreate them in the appropriate bandwidth. Finally, you must provision the nodes as BLSR nodes.

To complete a conversion from an unprotected point-to-point or linear ADM to a two-fiber BLSR, use the CTC Convert Unprotected/Path Protection to BLSR wizard from the Tools > Topology Upgrade menu.

Path Protection to Two-Fiber BLSR

CTC provides a topology conversion wizard to convert a path protection to a two-fiber BLSR. An upgrade from a path protection to a two-fiber BLSR changes path protection to line protection. A path protection can have a maximum of 16 nodes before conversion. Circuits paths must occupy the same time slots around the ring. Only the primary path through the path protection is needed; the topology conversion wizard removes the alternate path protection path during the conversion. Because circuit paths can begin and end outside of the topology, the conversion might create line-protected segments within path protection paths of circuits outside the scope of the ring. The physical arrangement of the ring nodes and spans remains the same after the conversion.

Two-Fiber BLSR to Four-Fiber BLSR

CTC provides a wizard to convert two-fiber OC-48 or OC-192 BLSRs to four-fiber BLSRs. To convert the BLSR, you must install two OC-48 or OC-192 cards at each two-fiber BLSR node, then log into CTC and convert each node from two-fiber to four-fiber. The fibers that were divided into working and protect bandwidths for the two-fiber BLSR are now fully allocated for working BLSR traffic.

Add or Remove a Node from a Topology

You can add or remove a node from a linear ADM, BLSR, or path protection configuration. Adding or removing nodes from BLSRs is potentially service affecting; however, adding and removing nodes from an existing 1+1 linear ADM or path protection configuration does not disrupt traffic. CTC provides a wizard for adding a node to a point-to-point or 1+1 linear ADM. This wizard is used when adding a node between two other nodes.

Rating: 0.0/5 (0 votes cast)

Personal tools